
Spring Roo - Reference Documentation

1.3.0.RELEASE

Copyright 2009-2013 VMware, Inc. All Rights Reserved. Copies of this document may be made for your
own use and for distribution to others, provided that you do not charge any fee for such copies and further

provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

1.3.0.RELEASE ii

Preface xi

I. Welcome to Spring Roo 1

1. Introduction 2

1.1. What is Roo? 2

1.2. Why Use It 3

1.2.1. Higher Productivity 3

1.2.2. Stock-Standard Java 3

1.2.3. Usable and Learnable 4

1.2.4. No Engineering Trade-Offs 5

1.2.5. Easy Roo Removal 6

1.3. Installation 6

1.4. Optional ROO_OPTS Configuration 7

1.5. First Steps: Your Own Web App in Under 10 Minutes 8

1.6. Exploring the Roo Samples 10

1.7. Suggested Steps to Roo Productivity 10

2. Beginning With Roo: The Tutorial 12

2.1. What You'll Learn 12

2.2. Alternative Tutorial: The Wedding RSVP Application 12

2.3. Tutorial Application Details 13

2.4. Step 1: Starting a Typical Project 13

2.5. Step 2: Creating Entities and Fields 16

2.6. Step 3: Integration Tests 18

2.7. Step 4: Using Your IDE 18

2.8. Step 5: Creating A Web Tier 19

2.9. Step 6: Loading the Web Server 20

2.10. Securing the Application 21

2.11. Customizing the Look & Feel of the Web UI 23

2.12. Selenium Tests 24

2.13. Backups and Deployment 24

2.14. Where To Next 25

3. Application Architecture 26

3.1. Architectural Overview 26

3.2. Critical Technologies 26

3.2.1. AspectJ 26

3.2.2. Spring 29

3.3. Entity Layer 30

3.4. Web Layer 31

3.5. Optional Services Layer 32

3.6. Goodbye DAOs 32

3.7. Maven 34

3.7.1. Packaging 34

3.7.2. Multi-Module Support 35

4. Usage and Conventions 38

4.1. Usability Philosophy 38

4.2. Shell Features 39

4.3. IDE Usage 41

4.4. Build System Usage 42

4.5. File System Conventions 43

4.6. Add-On Installation and Removal 43

Spring Roo - Reference Documentation

1.3.0.RELEASE iii

4.7. Recommended Practices 43

4.8. Managing Roo Add-Ons 44

5. Existing Building Blocks 49

5.1. Existing Projects 49

5.2. Existing Databases 49

6. Removing Roo 50

6.1. How Roo Avoids Lock-In 50

6.2. Pros and Cons of Removing Roo 51

6.3. Step-by-Step Removal Instructions 52

6.3.1. Step 1: Push-In Refactor 52

6.3.2. Step 2: Annotation Source Code Removal 52

6.3.3. Step 3: Annotation JAR Removal 53

6.4. Reenabling Roo After A Removal 53

II. Base Add-Ons 54

7. Base Add-On Overview 55

8. Persistence Add-On 57

8.1. JPA setup command 57

8.2. Entity JPA command 59

8.3. Field commands 62

9. Incremental Database Reverse Engineering (DBRE) Add-On 65

9.1. Introduction 65

9.1.1. What are the benefits of Roo's incremental reverse

 engineering? 65

9.1.2. How does DBRE work? 65

9.2. Installation 66

9.3. DBRE Add-On commands 67

9.4. The @RooDbManaged annotation 68

9.5. Supported JPA 2.0 features 70

9.5.1. Simple primary keys 70

9.5.2. Composite primary keys 70

9.5.3. Entity relationships 71

9.5.4. Other fields 73

9.5.5. Existing fields 73

9.6. Troubleshooting 74

10. Application Layering 76

10.1. The Big Picture 76

10.2. Persistence Layers 76

10.2.1. JPA Entities (Active Record style) 77

10.2.2. JPA Repository 77

10.2.3. MongoDB Persistence 78

10.3. Service Layer 80

11. Web MVC Add-On 82

11.1. Controller commands 82

11.2. Application Conversion Service 85

11.3. JSP Views 86

12. JavaServer Faces (JSF) Add-On 91

12.1. JSF commands 91

12.2. The @RooJsfManagedBean annotation 92

12.3. The @RooJsfConverter annotation 92

Spring Roo - Reference Documentation

1.3.0.RELEASE iv

12.4. The @RooJsfApplicationBean annotation 93

12.5. The bikeshop example 93

13. Cloud Foundry Add-On 94

13.1. Installing the Cloud Foundry Add-On 94

13.2. Getting Started 95

13.2.1. Logging In 95

13.2.2. The Commands 95

13.2.3. Deploying Your Application 96

13.2.4. Viewing Your Applications 97

13.2.5. Binding Services 97

13.2.6. Provisioning Memory 99

13.2.7. Starting Your Application 99

13.3. Conclusion 100

14. Google Web Toolkit Add-On 101

14.1. GWT Add-On Commands 101

14.2. Running and Compiling 105

14.3. Desktop and Mobile Views 106

14.4. ITDs: GWT Style 107

14.5. UiBinder ui.xml Files 107

14.6. Expected GWT Add-On Behaviour 108

14.7. Migrating a Roo GWT project (1.1 -> 1.1.1+) 108

14.8. Troubleshooting 108

15. JSON Add-On 110

15.1. Adding JSON Functionality to Domain Types 110

15.2. JSON REST Interface in Spring MVC controllers 111

16. Apache Solr Add-On 115

16.1. Solr Server Installation 115

16.2. Solr Add-On Commands 115

16.3. The @RooSolrSearchable Annotation 117

III. Internals and Add-On Development 119

17. Development Processes 120

17.1. Guidelines We Follow 120

17.2. Source Repository 122

17.3. Setting Up for Development 122

17.4. Submitting Patches 122

17.5. Path to Committer Status 122

18. Simple Add-Ons 123

18.1. Project Setup 123

18.2. Fast Creation 125

18.3. Shell Interaction 126

18.4. Operations 128

18.5. Packaging & Distribution 129

18.6. Publishing to RooBot 130

18.7. Upgrading Spring Roo Add-Ons from 1.0.x to 1.1.0 131

19. Advanced Add-Ons 133

19.1. Metadata 133

19.2. Annotations 133

19.3. Inter-Type Declarations 133

19.4. Recommendations 133

Spring Roo - Reference Documentation

1.3.0.RELEASE v

IV. External Add-Ons 134

20. Tailor Add-On 135

20.1. Introduction 135

20.2. How it works 135

20.3. Tailor Add-On Commands 136

20.4. Tailor Configuration 136

20.4.1. Actions 136

20.4.2. XML Configuration 137

20.4.3. Configuration Addon 139

V. Appendices 141

A. Command Index 142

A.1. Add On Commands 142

A.1.1. addon feedback bundle 142

A.1.2. addon info bundle 142

A.1.3. addon info id 142

A.1.4. addon install bundle 142

A.1.5. addon install id 143

A.1.6. addon list 143

A.1.7. addon remove 143

A.1.8. addon search 143

A.1.9. addon upgrade all 144

A.1.10. addon upgrade available 144

A.1.11. addon upgrade bundle 144

A.1.12. addon upgrade id 145

A.1.13. addon upgrade settings 145

A.2. Backup Commands 145

A.2.1. backup 145

A.3. Classpath Commands 145

A.3.1. class 145

A.3.2. constructor 146

A.3.3. enum constant 146

A.3.4. enum type 146

A.3.5. focus 147

A.3.6. interface 147

A.4. Cloud Commands 147

A.4.1. cloud setup 147

A.5. Controller Commands 147

A.5.1. controller all 148

A.5.2. controller scaffold 148

A.5.3. web mvc all 148

A.5.4. web mvc scaffold 148

A.6. Creator Commands 149

A.6.1. addon create advanced 149

A.6.2. addon create i18n 149

A.6.3. addon create simple 150

A.6.4. addon create wrapper 150

A.7. Data On Demand Commands 151

A.7.1. dod 151

A.8. Dbre Commands 151

Spring Roo - Reference Documentation

1.3.0.RELEASE vi

A.8.1. database introspect 151

A.8.2. database reverse engineer 151

A.9. Embedded Commands 152

A.9.1. web mvc embed document 152

A.9.2. web mvc embed generic 153

A.9.3. web mvc embed map 153

A.9.4. web mvc embed photos 153

A.9.5. web mvc embed stream video 153

A.9.6. web mvc embed twitter 154

A.9.7. web mvc embed video 154

A.9.8. web mvc embed wave 154

A.10. Equals Commands 154

A.10.1. equals 155

A.11. Felix Delegator 155

A.11.1. exit 155

A.11.2. osgi framework command 155

A.11.3. osgi headers 155

A.11.4. osgi install 155

A.11.5. osgi log 156

A.11.6. osgi obr deploy 156

A.11.7. osgi obr info 156

A.11.8. osgi obr list 156

A.11.9. osgi obr start 156

A.11.10. osgi ps 156

A.11.11. osgi resolve 157

A.11.12. osgi scr config 157

A.11.13. osgi scr disable 157

A.11.14. osgi scr enable 157

A.11.15. osgi scr info 157

A.11.16. osgi scr list 157

A.11.17. osgi start 158

A.11.18. osgi uninstall 158

A.11.19. osgi update 158

A.12. Field Commands 158

A.12.1. field boolean 158

A.12.2. field date 159

A.12.3. field embedded 160

A.12.4. field enum 161

A.12.5. field file 161

A.12.6. field list 162

A.12.7. field number 163

A.12.8. field other 164

A.12.9. field reference 165

A.12.10. field set 165

A.12.11. field string 166

A.13. Finder Commands 167

A.13.1. finder add 167

A.13.2. finder list 168

A.14. Help Commands 168

Spring Roo - Reference Documentation

1.3.0.RELEASE vii

A.14.1. help 168

A.14.2. reference guide 168

A.15. Hint Commands 168

A.15.1. hint 168

A.16. Integration Test Commands 169

A.16.1. test integration 169

A.16.2. test mock 169

A.16.3. test stub 169

A.17. J Line Shell Component 169

A.17.1. */ 170

A.17.2. /* 170

A.17.3. // 170

A.17.4. date 170

A.17.5. flash test 170

A.17.6. script 170

A.17.7. system properties 170

A.17.8. version 171

A.18. Jms Commands 171

A.18.1. field jms template 171

A.18.2. jms listener class 171

A.18.3. jms setup 171

A.19. Jpa Commands 172

A.19.1. database properties list 172

A.19.2. database properties remove 172

A.19.3. database properties set 172

A.19.4. embeddable 172

A.19.5. entity jpa 173

A.19.6. jpa setup 174

A.19.7. persistence setup 175

A.20. Jsf Commands 175

A.20.1. web jsf all 176

A.20.2. web jsf media 176

A.20.3. web jsf scaffold 176

A.20.4. web jsf setup 176

A.21. Json Commands 177

A.21.1. json add 177

A.21.2. json all 177

A.22. Jsp Commands 177

A.22.1. controller class 177

A.22.2. web mvc controller 178

A.22.3. web mvc install language 178

A.22.4. web mvc install view 178

A.22.5. web mvc language 178

A.22.6. web mvc setup 178

A.22.7. web mvc update tags 179

A.22.8. web mvc view 179

A.23. Logging Commands 179

A.23.1. logging setup 179

A.24. Mail Commands 179

Spring Roo - Reference Documentation

1.3.0.RELEASE viii

A.24.1. email sender setup 179

A.24.2. email template setup 180

A.24.3. field email template 180

A.25. Maven Commands 180

A.25.1. dependency add 180

A.25.2. dependency remove 181

A.25.3. maven repository add 181

A.25.4. maven repository remove 181

A.25.5. module create 182

A.25.6. module focus 182

A.25.7. perform assembly 182

A.25.8. perform clean 182

A.25.9. perform command 183

A.25.10. perform eclipse 183

A.25.11. perform package 183

A.25.12. perform tests 183

A.25.13. project 183

A.26. Metadata Commands 184

A.26.1. metadata cache 184

A.26.2. metadata for id 184

A.26.3. metadata for module 184

A.26.4. metadata for type 184

A.26.5. metadata status 184

A.26.6. metadata trace 185

A.27. Mongo Commands 185

A.27.1. entity mongo 185

A.27.2. mongo setup 185

A.27.3. repository mongo 186

A.28. Os Commands 186

A.28.1. ! 186

A.29. Pgp Commands 186

A.29.1. pgp automatic trust 186

A.29.2. pgp key view 186

A.29.3. pgp list trusted keys 186

A.29.4. pgp refresh all 187

A.29.5. pgp status 187

A.29.6. pgp trust 187

A.29.7. pgp untrust 187

A.30. Process Manager Commands 187

A.30.1. development mode 187

A.30.2. poll now 187

A.30.3. poll speed 188

A.30.4. poll status 188

A.31. Process Manager Diagnostics Listener 188

A.31.1. process manager debug 188

A.32. Prop File Commands 188

A.32.1. properties list 188

A.32.2. properties remove 188

A.32.3. properties set 189

Spring Roo - Reference Documentation

1.3.0.RELEASE ix

A.33. Proxy Configuration Commands 189

A.33.1. proxy configuration 189

A.34. Repository Jpa Commands 189

A.34.1. repository jpa 189

A.35. Security Commands 190

A.35.1. permissionEvaluator 190

A.35.2. security setup 190

A.36. Selenium Commands 190

A.36.1. selenium test 190

A.37. Service Commands 190

A.37.1. service all 191

A.37.2. service secure all 191

A.37.3. service secure type 191

A.37.4. service type 192

A.38. Solr Commands 192

A.38.1. solr add 192

A.38.2. solr all 192

A.38.3. solr setup 193

A.39. Tailor Commands 193

A.39.1. tailor activate 193

A.39.2. tailor deactivate 193

A.39.3. tailor list 193

A.40. Uaa Commands 193

A.40.1. download accept terms of use 193

A.40.2. download privacy level 194

A.40.3. download reject terms of use 194

A.40.4. download status 194

A.40.5. download view 194

A.41. Web Finder Commands 194

A.41.1. web mvc finder add 194

A.41.2. web mvc finder all 194

A.42. Web Flow Commands 195

A.42.1. web flow 195

A.43. Web Json Commands 195

A.43.1. web mvc json add 195

A.43.2. web mvc json all 195

A.43.3. web mvc json setup 195

B. Upgrade Notes and Known Issues 196

B.1. Known Issues 196

B.2. Version Numbering Approach 197

B.3. Upgrading To Any New Release 197

B.4. Upgrading to 1.2.0.RC1 198

B.5. Upgrading to 1.2.0.M1 199

B.6. Upgrading to 1.1.3.RELEASE 199

B.7. Upgrading to 1.1.2.RELEASE 199

B.8. Upgrading to 1.1.1.RELEASE 199

B.9. Upgrading to 1.1.0.RELEASE 200

B.10. Upgrading to 1.1.0.RC1 200

B.11. Upgrading to 1.1.0.M3 200

Spring Roo - Reference Documentation

1.3.0.RELEASE x

B.12. Upgrading to 1.1.0.M2 201

B.13. Upgrading to 1.1.0.M1 201

B.14. Upgrading to 1.0.2.RELEASE 201

B.15. Upgrading to 1.0.1.RELEASE 201

B.16. Upgrading to 1.0.0.RELEASE 201

B.17. Upgrading to 1.0.0.RC4 202

B.18. Upgrading to 1.0.0.RC3 202

C. Project Background 204

C.1. History 204

C.2. Mission Statement 205

D. Roo Resources 207

D.1. Project Home Page 207

D.2. Downloads and Maven Repositories 207

D.3. Community Forums 207

D.4. Twitter 208

D.5. Issue Tracking 208

D.6. Source Repository 209

D.7. Source Web Browsing 209

D.8. Commercial Products and Services 209

D.9. Other 209

1.3.0.RELEASE xi

Preface
I still recall the moment when I realised that I would like to program. The motivation for me was

recognition that creativity with software is mostly constrained by your imagination and skills, whereas

creativity outside the software world is typically constrained by whatever physical items you happen

to possess. Of course at that early stage I hadn't yet come across the subtle constraints in my optimistic

assessment of software (such as CPU capabilities, memory, CAP theory etc!), but the key principle

that software was almost boundlessly flexible sparked an interest that continues to this day.

Of course, the creativity potential of software implies an abundance of time, as it is time that is the

principal ingredient in building and maintaining software. Ever since the "castle clock" in 1206 we

have been exploring better ways of programming ever-increasingly sophisticated computers, and the

last decade in particular has seen a surge in new languages and techniques for doing so.

Despite this 800 year history of programming, software projects are no different from other projects in

that they are still bound by the project management triangle: "cost, scope or schedule: pick any two".

Professional software developers grapple with this reality every day, constantly striving for new tools

and techniques that might help them deliver quality software more quickly.

While initial delivery remains the key priority for most software projects, the long-term operational

dimensions of that software are even more critical. The criticality of these operational dimensions is

easily understood given that most software needs to be executed, managed, maintained and enhanced

for many years into the future. Architectural standards are therefore established to help ensure that

software is of high quality and preferably based on well-understood, vendor-agnostic and standards-

based mainstream engineering approaches.

There is of course a natural tension between the visibility of initial delivery and the conservatism

typically embodied in architectural standards. Innovative new approaches often result in greater

productivity and in turn faster project delivery, whereas architectural standards tend to restrict these

new approaches. Furthermore, there is a social dimension in that most developers focus their time on

acquiring knowledge, skills and experience with those technologies that will realistically be used, and

this in turn further cements the dominance of those technologies in architectural standards.

It was within this historical and present-day context that we set out to build something that would offer

both genuine innovation and architectural desirability. We sought to build something that would deliver

compelling developer productivity without compromising on engineering integrity or discarding

mainstream existing technologies that benefit from architectural standards approval, excellent tooling

and a massive pool of existing developer knowledge, skills and experience.

Spring Roo is the modern-day answer to enterprise Java productivity. It's the normal Java platform

you know, but with productivity levels you're unlikely to have experienced before (at least on Java!).

It's simple to understand and easy to learn. Best of all, you can use Roo without needing to seek

architectural approval, as the resulting applications use nothing but the mainstream Java technologies

you already use. Plus all your existing Java knowledge, skills and experience are directly applicable

when using Roo, and applications built with Roo enjoy zero CPU or memory overhead at runtime.

Thank you for taking the time to explore Spring Roo. We hope that you enjoy using Roo as much as

we've enjoyed creating it.

Ben Alex, Founder - Spring Roo

1.3.0.RELEASE 1

Part I. Welcome to Spring Roo
Welcome to Spring Roo! In this part of the reference guide we will explore everything you need to know in order

to use Roo effectively. We've designed this part so that you can read each chapter consecutively and stop at any

time. However, the more you read, the more you'll learn and the easier you'll find it to work with Roo.

Parts II, III and IV of this manual are more designed for reference usage and people who wish to extend Roo itself.

1.3.0.RELEASE 2

Chapter 1. Introduction

1.1. What is Roo?

Spring Roo is an easy-to-use productivity tool for rapidly building enterprise applications in the Java

programming language. It allows you to build high-quality, high-performance, lock-in-free enterprise

applications in just minutes. Best of all, Roo works alongside your existing Java knowledge, skills and

experience. You probably won't need to learn anything new to use Roo, as there's no new language or

runtime platform needed. You simply program in your normal Java way and Roo just works, sitting

in the background taking care of the things you don't want to worry about. It's an approach unlike

anything you've ever seen before, we guarantee it!

You work with Roo by loading its "shell" in a window and leaving it running. You can interact with Roo

via commands typed into the shell if you like, but most of the time you'll just go about programming

in your text editor or IDE as usual. As you make changes to your project, Roo intelligently determines

what you're trying to do and takes care of doing it for you automatically. This usually involves

automatically detecting file system changes you've made and then maintaining files in response. We

say "maintaining files" because Roo is fully round-trip aware. This means you can change any code

you like, at any time and without telling Roo about it, yet Roo will intelligently and automatically

deal with whatever changes need to be made in response. It might sound magical, but it isn't. This

documentation will clearly explain how Roo works and you'll find yourself loving the approach - just

like so the many other people who are already using Roo.

Before you start wondering how Roo works, let's confirm a few things it is NOT:

• Roo is not a runtime. Roo is not involved with your project when it runs in production. You won't

find any Roo JARs in your runtime classpath or Roo annotations compiled into your classes. This is

actually a wonderful thing. It means you have no lock-in to worry about (you can remove Roo from

your project in just a couple of minutes!). It probably also means you won't need to get approval to

use Roo (what's to approve when it's more like a command line tool than a critical runtime library

like Spring Framework?). It also means there is no technical way possible for Roo to slow your

project down at runtime, waste memory or bloat your deployment artefacts with JARs. We're really

proud of the fact that Roo imposes no engineering trade-offs, as it was one of our central design

objectives.

• Roo is not an IDE plugin. There is no requirement for a "Roo Eclipse plugin" or "Roo IntelliJ plugin".

Roo works perfectly fine in its own operating system command window. It sits there and monitors

your file system, intelligently and incrementally responding to changes as appropriate. This means

you're perfectly able to use vi or emacs if you'd like (Roo doesn't mind how your project files get

changed).

• Roo is not an annotation processing library. There is a Java 6 feature known as the annotation

processing API. Roo does not use this API. This allows Roo to work with Java 5, and also gives us

access to a much more sophisticated and extensible internal model.

So how does Roo actually work then? The answer to that question depends on how much detail you'd

like. In super-summary form, Roo uses an add-on based architecture that performs a combination of

passive and active code generation of inter-type declarations. If you're interested in how that works at a

practical project level, we cover that shortly in the "Beginning With Roo: The Tutorial" chapter. Or for

an advanced look at Roo internals, we've covered that in Part III: Internals and Add-On Development.

http://projects.spring.io/spring-roo/
http://projects.spring.io/spring-framework/

Introduction

1.3.0.RELEASE 3

1.2. Why Use It

There are dozens of reasons people like to use Roo. We've worked hard to make it an attractive tool that

delivers real value without imposing unpleasant trade-offs. Nonetheless, there are five major reasons

why people like Roo and use it. Let's discuss these major reasons below.

1.2.1. Higher Productivity

With Roo it is possible for Java developers to build sophisticated enterprise applications in a best-

practice manner within minutes. This is not just a marketing claim, but it's a practical fact you can

experience yourself by trying the ten minute test.

Anyone who has programmed Java for a few years and looked at the alternatives on other platforms

will be fully aware that enterprise Java suffers from productivity problems. It takes days to start a new

project and incredibly long cycle times as you go about normal development. Still, we remain with

Java because it's a highly attractive platform. It's the most widely used programming language on the

planet, with millions of competent developers. It has first-class tooling, excellent runtime performance,

numerous mature libraries and widely-supported standards. Java is also open source, has multiple

vendors and countless choice.

We built Roo because we want enterprise Java developers to enjoy the same productivity levels that

developers on other platforms take for granted. Thanks to Roo, Java developers can now enjoy this

higher productivity plus a highly efficient, popular, scalable, open, reliable platform. Best of all, in five

years time it will still be possible to hire millions of people who can look at those Roo-based projects

and understand what is going on and maintain them (even if you've stopped using Roo by then).

Roo's higher productivity is provided both at original project creation, and also as a developer builds

out the rest of the project. Because Roo provides round-trip support, the higher productivity is

automatically provided over the full lifespan of a project. This is particularly important given the long-

term maintenance costs of a project far outweigh the initial development costs. While you can use Roo

just for an initial jump-start if you so wish, your return on investment is exponential as you continue

using it throughout a project lifespan.

Finally, while individual productivity is important, most of us work in teams and know that someday

someone else will probably maintain the code we've written. As professionals we follow architectural

standards and conventions to try and ensure that our present and future colleagues will be able to

understand what we did, why, and have an easy time maintaining it. Our organisations often establish

standards for us to follow in an effort to ensure other projects are tackled in similar ways, thus

allowing people to transfer between projects and still be productive. Of course, most organisations also

have people of greatly differing backgrounds and experiences, with new graduates typically working

alongside more experienced developers and architect-level experts. Roo helps significantly in this type

of real-world environment because it automatically implements specific design patterns in an optimal

convention-over-configuration manner. This ensures consistency of implementation within a given

Roo-based project, as well as across all other Roo-based projects within an organisation (and even

outside your organisation, which greatly helps with hiring). Of course, the fact Roo builds on stock-

standard Java also means people of vastly different experience levels can all be highly productive and

successful with Roo.

1.2.2. Stock-Standard Java

It's no longer necessary to switch platform or language to achieve extremely high levels of productivity!

We designed Roo from the outset so those people with existing Java 5 knowledge, skills and experience

http://www.tiobe.com/content/paperinfo/tpci/index.html
http://www.oreillynet.com/onjava/blog/2007/01/1_in_every_10_java_developer_i.html

Introduction

1.3.0.RELEASE 4

would feel right at home. If you've ever built an enterprise application with Java, some or all of the

technologies that Roo uses by default will already be familiar to you.

Some of the common technologies Roo projects use include Spring (such as Spring Framework, Spring

Security and Spring Web Flow), Maven, Java Server Pages (JSP), Java Persistence API (JPA, such

as Hibernate), Tiles and AspectJ. We've chosen technologies which are extremely commonly used in

enterprise Java projects, ensuring you've probably either already used them or at least will have no

difficulty finding hundreds of thousands of other people who have (and the resultant books, blogs,

samples etc that exist for each). Also, because most of these technologies are implemented using add-

ons, if you'd like Roo to use a different technology on your project it's quite easy to do so.

By using standard Java technologies, Roo avoids reinventing the wheel or providing a limited-value

abstraction over them. The technologies are available to you in their normal form, and you can use

them in the same way as you always have. What Roo brings to the table is automatic setup of those

technologies into a Spring-certified best-practice application architecture and, if you wish, automatic

maintenance of all files required by those technologies (such as XML, JSP, Java etc). You'll see this

in action when you complete the ten minute test.

You'll also find that Roo adopts a very conservative, incremental approach to adding technologies to

your project. This means when you first start a new project Roo will only assume you want to build

a simple JAR. As such it will have next to no dependencies. Only when you ask to add a persistence

provider will JPA be installed, and only when you add a field using JavaBean Validation annotations

will that library be installed. The same holds true for Spring Security, Spring Web Flow and the other

technologies Roo supports. With Roo you really do start small and incrementally add technologies if

and when you want to, which is consistent with Roo's philosophy of there being no engineering trade-

offs.

1.2.3. Usable and Learnable

There are many examples of promising technologies that are simply too hard for most people to learn

and use. With Roo we were inspired by the late Jef Raskin's book, "The Humane Interface". In the

book Raskin argued we have a duty to make things so easy to use that people naturally "habituate"

to the interface, that text-based interfaces are often more appropriate than GUIs, and that your "locus

of attention" is all that matters to you and a machine should never disrupt your locus of attention and

randomly impose its idiosyncratic demands upon you.

With Roo we took these ideas to heart and designed a highly usable interface that lets you follow your

locus of attention. This means you can do things in whatever order you feel is appropriate and never

be subservient to the Roo tool. You want to delete a file? Just do it. You want to edit a file? Just do it.

You want to change the version of Spring you're using? Just do it. You want to remove Roo? Just do it.

You want to hand-write some code Roo was helping you with? Just do it. You want to use Emacs and

Vim at the same time? No problem. You forgot to load Roo when you were editing some files? That's

no problem either (in fact you can elect to never load Roo again and your project will remain just fine).

Because Roo uses a text-based interface, there is the normal design trade-off between learnability,

expressability and conciseness. No text-based interface can concurrently satisfy all three dimensions.

With Roo we decided to focus on learnability and expressability. We decided conciseness was less

important given the Roo shell would provide an intuitive, tab-based completion system. We also added

other features to deliver conciseness, such as contextual awareness (which means Roo determines the

target of your command based on the command completed before it) and command abbreviation (which

means you need only type in enough of the command so Roo recognises what you're trying to do).

http://spring.io/
http://en.wikipedia.org/wiki/The_Humane_Interface

Introduction

1.3.0.RELEASE 5

The learnability of Roo is concurrently addressed on three fronts. First, we favor using standard Java

technologies that you probably already know. Second, we are careful to keep Roo out of your way.

The more Roo simply works in the background automatically without needing your involvement, the

less you need to learn about it in the first place. This is consistent with Raskin's recommendation to

never interrupt your locus of attention. Third, we offer a lot of learnability features in Roo itself. These

include the "hint" command, which suggests what you may wish to do next based on your present

project's state. It's quite easy to build an entire Roo project simply by typing "hint", pressing enter, and

following the instructions Roo presents (we do this all the time during conference talks; it's always

easier than remembering commands!). There's also the intelligent tab completion, which has natural,

friendly conventions like completing all mandatory arguments step-by-step (without distracting you

with unnecessary optional arguments). There's also the online "help" command, sample scripts, this

documentation and plenty of other resources.

Roo also follows a number of well-defined conventions so that you always know what it's doing. Plus

it operates in a "fail safe" manner, like automatically undoing any changes it makes to the file system

should something go wrong. You'll quickly discover that Roo is a friendly, reliable companion on your

development journey. It doesn't require special handling and it's always there for you when you need it.

In summary, we've spent a lot of time thinking about usability and learnability to help ensure you enjoy

your Roo experience.

1.2.4. No Engineering Trade-Offs

Roo doesn't impose any engineering trade-offs on your project. In fact, compared with most Spring-

based enterprise applications, we're almost certain you'll find a Roo application will have a smaller

deployment artefact, operate more quickly in terms of CPU time, and consume less memory. You'll

also find you don't miss out on any of the usual IDE services like code assist, debugging and profiling.

We'll explore how Roo achieves this below, but this information is relatively advanced and is provided

mainly for architects who are interested in Roo's approach. As this knowledge is not required to simply

use Roo, feel free to jump ahead to the next section if you wish.

Smaller deployment artefacts are achieved due to Roo's incremental dependency addition approach.

You start out with a small JAR and then we add dependencies only if you actually need them. As

of Roo 1.0.0, a typical Roo-based web application WAR is around 13 Mb. This includes major

components like Spring, Spring JavaScript (with embedded Dojo) and Hibernate, plus a number of

smaller components like URL rewriting. As such Roo doesn't waste disk space or give you 30+ Mb

WARs, which results in faster uploads and container startup times.

Speaking of startup times, Roo uses AspectJ's excellent compile-time weaving approach. This gives us

a lot more power and flexibility than we'd ordinarily have, allowing us to tackle advanced requirements

like advising domain objects and dependency injecting them with singletons. It also means the dynamic

proxies typically created when loading Spring are no longer required. Roo applications therefore

startup more quickly, as there's no dynamic proxy creation overhead. Plus Roo applications operate

more quickly, as there's no dynamic proxy objects adding CPU time to the control flow.

Because Roo's AspectJ usage means there are no proxy objects, you also save the memory expense

of having to hold them. Furthermore, Roo has no runtime component, so you won't lose any memory

or CPU time there either. Plus because Roo applications use Java as their programming language,

there won't be any classes being created at runtime. This means a normal Roo application won't suffer

exhaustion of permanent generation memory space.

Introduction

1.3.0.RELEASE 6

While some people would argue these deployment size, CPU and memory considerations are minor,

the fact is they add up when you have a large application that needs to scale. With Roo your applications

will use your system resources to their full potential. Plus as we move more and more enterprise

applications into virtualized and cloud-hosted environments, the requirement for performant operation

on shared hardware will become even more relevant.

You'll also find that Roo provides a well thought out application architecture that delivers pragmatism,

flexibility and ease of maintainability. You'll see we've made architectural decisions like eliminating

the DAO layer, using annotation-based dependency injection, and automatically providing dependency

injection on entities. These decisions dramatically reduce the amount of Java and XML code you have

to write and maintain, plus improve your development cycle times and refactoring experiences.

With Roo, you don't have to make a trade-off between productivity or performance. Now it's easy to

have both at the same time.

1.2.5. Easy Roo Removal

One of the biggest risks when adopting a new tool like Roo is the ease at which you can change

your mind in the future. You might decide to remove a tool from your development ecosystem for

many different reasons, such as changing requirements, a more compelling alternative emerging, the

tool having an unacceptable number of bugs, or the tool not adequately supporting the versions of

other software you'd like to use. These risks exist in the real world and it's important to mitigate the

consequences if a particular tool doesn't work out in the long-term.

Because Roo does not exist at runtime, your risk exposure from using Roo is already considerably

diminished. You can decide to stop using Roo and implement that decision without even needing to

change any production deployment of the application.

If you do decide to stop using Roo, this can be achieved in just a few minutes. There is no need to

write any code or otherwise make significant changes. We've covered the short removal process in a

dedicated removing Roo chapter, but in summary you need to perform a "push in refactor" command

within Eclipse and then do a quick regular expression-based find and replace. That's all that is needed

to 100% remove Roo from your project. We often remove Roo from a project during conference

demonstrations just to prove to people how incredibly easy it is. It really only takes two to three minutes

to complete.

We believe that productivity tools should earn their keep by providing you such a valuable service that

you want to continue using them. We've ensured Roo will never lock you in because (a) it's simply the

right and credible thing to do engineering-wise and (b) we want Roo to be such an ongoing help on

your projects that you actually choose to keep it. If you're considering alternative productivity tools,

consider whether they also respect your right to decide to leave and easily implement that decision, or

if they know you're locked in and can't do much about it.

1.3. Installation

Roo is a standard Java application that is fully self-contained within the Roo distribution ZIPs. You

can download Roo from one of the download sites, or build a distribution ZIP yourself from our source

control repository.

If you are upgrading from an existing version of Spring Roo, you should consult the upgrade notes

for important information.

Introduction

1.3.0.RELEASE 7

Before attempting to install Roo, please ensure you have the following system dependencies:

• A Linux, Apple or Windows-based operating system (other operating systems may work but are

not guaranteed)

• A Java 6 or 7 installation, with the $JAVA_HOME environment variable pointing to the installation.

Note that Java 8 is currently not supported.

• Apache Maven 2.0.9 or above installed and in the path

We have listed various considerations concerning the Java Development Kit (JDK) and operating

systems in the known issues section of this documentation. We always recommend you use the latest

version of Java and Maven that are available for your platform. We also recommend that you use

Spring Tool Suite (STS), which is our free Eclipse-based IDE that includes a number of features that

make working with Roo even easier (you can of course use Roo with normal Eclipse or without an

IDE at all if you prefer).

Once you have satisfied the initial requirements, you can install Roo by following these steps:

1. Unzip the Roo installation ZIP to a directory of your choice; this will be known as $ROO_HOME in

the directions below

2. If using Windows, add $ROO_HOME\bin to your %PATH% environment variable

3. If using Linux or Apple, create a symbolic link using a command such as sudo ln -s $ROO_HOME/

bin/roo.sh /usr/bin/roo

Next verify Roo has been installed correctly. This can be done using the following commands:

$ mkdir roo-test

$ cd roo-test

$ roo quit

 ____ ____ ____

 / __ \/ __ \/ __ \

 / /_/ / / / / / / /

 / _, _/ /_/ / /_/ /

/_/ |_|____/____/ W.X.Y.ZZ [rev RRR]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.

$ cd ..

$ rmdir roo-test

If you see the logo appear, you've installed Roo successfully. For those curious, the "[rev RRR]" refers

to the Git commit ID used to compile that particular build of Roo.

1.4. Optional ROO_OPTS Configuration

The standalone Roo shell supports fine-tuning display-related configuration via the ROO_OPTS

environment variable. An environment variable is used so that these configuration settings can be

applied before the shell is instantiated and the first messages displayed. The ROO_OPTS settings does

not apply within Spring Tool Suite's embedded Roo shell.

At present the only configuration settings available is roo.bright. This causes foreground messages in

the shell to be displayed with brighter colors. This is potentially useful if your background color is

light (e.g. white). You can set the variable using the following commands:

http://spring.io/tools/sts

Introduction

1.3.0.RELEASE 8

$ export ROO_OPTS="-Droo.bright=true" // Linux or Apple

$ set ROO_OPTS="-Droo.bright=true" // Windows users

There is an enhancement request within our issue tracker for customisable shell color schemes. If

you're interested in seeing this supported by Roo, you may wish to consider voting for ROO-549.

1.5. First Steps: Your Own Web App in Under 10 Minutes

Now that you have installed Roo, let's spend a couple of minutes building an enterprise application

using Roo.

The purpose of this application is just to try out Roo. We won't explain what's going on in these steps,

but don't worry - we'll do that in the next chapter, Beginning With Roo: The Tutorial. We will try to

teach you about some usability features as we go along, though.

Please start by typing the following commands:

$ mkdir ten-minutes

$ cd ten-minutes

$ roo

 ____ ____ ____

 / __ \/ __ \/ __ \

 / /_/ / / / / / / /

 / _, _/ /_/ / /_/ /

/_/ |_|____/____/ W.X.Y.ZZ [rev RRR]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.

roo> hint

Welcome to Roo! We hope you enjoy your stay!

Before you can use many features of Roo, you need to start a new project.

To do this, type 'project' (without the quotes) and then hit TAB.

Enter a --topLevelPackage like 'com.mycompany.projectname' (no quotes).

When you've finished completing your --topLevelPackage, press ENTER.

Your new project will then be created in the current working directory.

Note that Roo frequently allows the use of TAB, so press TAB regularly.

Once your project is created, type 'hint' and ENTER for the next suggestion.

You're also welcome to visit http://forum.springframework.org for Roo help.

Notice the output from the "hint" command guides you through what to do next. Let's do that:

roo> project --topLevelPackage com.tenminutes

Created /home/balex/ten-minutes/pom.xml

Created SRC_MAIN_JAVA

Created SRC_MAIN_RESOURCES

Created SRC_TEST_JAVA

Created SRC_TEST_RESOURCES

Created SRC_MAIN_WEBAPP

Created SRC_MAIN_RESOURCES/META-INF/spring

Created SRC_MAIN_RESOURCES/META-INF/spring/applicationContext.xml

roo> hint

Roo requires the installation of a JPA provider and associated database.

Type 'jpa setup' and then hit TAB three times.

We suggest you type 'H' then TAB to complete "HIBERNATE".

After the --provider, press TAB twice for database choices.

For testing purposes, type (or TAB) HYPERSONIC_IN_MEMORY.

If you press TAB again, you'll see there are no more options.

http://jira.springframework.org/browse/ROO-549

Introduction

1.3.0.RELEASE 9

As such, you're ready to press ENTER to execute the command.

Once JPA is installed, type 'hint' and ENTER for the next suggestion.

At this point you've now got a viable Maven-based project setup. But let's make it more useful by

setting up JPA. In the interests of time, I'll just include the commands you should type below. Be sure

to try using the TAB key when using the shell, as it will save you from having to type most of these

commands:

roo> jpa setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

roo> hint

roo> entity jpa --class ~.Timer --testAutomatically

roo> hint

roo> field string --fieldName message --notNull

roo> hint web mvc

roo> web mvc setup

roo> web mvc all --package ~.web

roo> selenium test --controller ~.web.TimerController

roo> perform tests

roo> perform package

roo> perform eclipse

roo> quit

$ mvn tomcat:run

The "perform" commands could have been easily undertaken from the command prompt using "mvn"

instead. We just did them from within Roo to benefit from TAB completion. You could have also

skipped the "perform eclipse" command if you are using the m2eclipse plugin. If you are using Spring

Tool Suite (STS), it automatically includes m2eclipse and as such you do not need to use the "perform

eclipse" command. Indeed if you're an STS user, you could have started your Roo project right from

within the IDE by selecting the File > New > Spring Roo menu option and completing the steps. In that

case a Roo Shell view will open within STS and from there you can enter the remaining commands.

Now that you've loaded Tomcat, let's run the Selenium tests. You can do this by loading

a new command window, changing into the ten-minutes directory, and then executing mvn

selenium:selenese. You should see your FireFox web browser execute the generated Selenium tests.

You can also visit your new web application at http://localhost:8080/tenminutes, which should look

similar to the picture below.

Naturally in this short ten minute test we've skipped dozens of features that Roo can provide, and didn't

go into any detail on how you could have customised the application. We just wanted to show you that

Roo works and you can build an application in record-time. The Beginning With Roo: The Tutorial

chapter will go through the process of building an application in much more depth, including how to

work with your IDE and so on.

http://localhost:8080/tenminutes

Introduction

1.3.0.RELEASE 10

1.6. Exploring the Roo Samples

Now that you've built your first application during the ten minute test, you have a rough idea of how

Roo works. To help you learn Roo we ship several sample scripts that can be used to build new

applications. These sample scripts can be found in your $ROO_HOME/classpath/src/main/resources/

directory. These sample scripts available from roo classpath. You can run any sample script by using

the following command format:

$ mkdir sample

$ cd sample

$ roo

roo> script --file filename.roo

roo> quit

$ mvn tomcat:run

The filename.roo shown in the statements above should be substituted with one of the filenames from

this list (note that you get filename completion using TAB):

• clinic.roo: The Petclinic sample script is our most comprehensive. It builds a large number of

entities, controllers, Selenium tests and dynamic finders. It also sets up Log4J and demonstrates

entity relationships of different cardinalities.

• vote.roo: The Voting sample script was built live on-stage during SpringOne Europe 2009, as

detailed in the project history section. This is a nice sample script because it's quite small and only

has two entities. It also demonstrates Spring Security usage.

• wedding.roo: The Wedding RSVP sample script is the result of the wedding RSVP tutorial. If you're

looking for another Roo tutorial, this sample script (along with the associated blog entry) is a good

choice. This project includes Selenium tests, dynamic finders and Log4j configuration.

• expenses.roo: The Expenses sample script produces a Google Web Toolkit (GWT) application using

Spring Roo. This shows you the new GWT scaffolding support we added to Roo 1.1.

• pizzashop.roo: The PizzaShop sample script demonstrates Roo's integration of JPA composite

primary keys. It produces a headless application which is accessible via JSON (available through

Spring MVC REST integration). To add a Web UI on top of it, simply run the web mvc all command.

The application is described in greater detail in our tutorial.

1.7. Suggested Steps to Roo Productivity

As we draw to the close of this first chapter, you know what Roo is, why you'd like to use it, have

installed it and completed the ten minute test, plus you know which samples are available. You could

probably stop at this point and apply Roo productively to your projects, but we recommend that you

spend a couple of hours learning more about Roo. It will be time well spent and easily recouped by

the substantially greater productivity Roo will soon deliver on your projects.

The next step is to complete the Beginning With Roo: The Tutorial chapter. In the tutorial chapter you'll

learn how to use Roo with your preferred IDE and how flexible and natural it is to develop with Roo.

After that you should read the application architecture chapter to understand what Roo applications

look like. From there you might wish to wrap up the recommended tour of Roo with a skim over the

usage and conventions chapter. This final recommended chapter will focus more on using the Roo tool

and less on the applications that Roo creates.

http://code.google.com/webtoolkit/

Introduction

1.3.0.RELEASE 11

If you can't find the information you're looking for in this reference guide, the resources chapter

contains numerous Roo-related web sites and other community resources.

We welcome your comments and suggestions as you go about using Roo. One convenient way to

share your experiences is to Tweet with the @springroo hash code. You can also follow Roo's core

development team via Twitter for the latest Roo updates. In any event, we thank you for exploring

Roo and hope that you enjoy your Roo journey.

http://search.twitter.com/search?q=@SpringRoo

1.3.0.RELEASE 12

Chapter 2. Beginning With Roo: The Tutorial

In this chapter we'll build an app step-by-step together in a relatively fast manner so that you can see

how to typically use Roo in a normal project. We'll leave detailed features and side-steps to other

sections of this manual.

2.1. What You'll Learn

In this tutorial you will learn to create a complete Web application from scratch using Roo. The

application we are going to develop will demonstrate many of the core features offered by Roo. In

particular you will learn how to use the Roo shell for:

• project creation

• creation and development of domain objects (JPA entities)

• adding fields of different types to the domain objects

• creating relationships between domain objects

• automatic creation of integration tests

• creating workspace artifacts to import the project into your IDE

• automatic scaffolding of a Web tier

• running the application in a Web container

• controlling and securing access to different views in the application

• customizing the look and feel of the Web UI for our business domain

• creating and running Selenium tests

• deployment and backup of your application

2.2. Alternative Tutorial: The Wedding RSVP Application

In addition to the tutorial in this chapter, we've published a separate step-by-step tutorial in the form

of a blog entry. This blog entry covers the process of building a wedding RSVP application. It is

kept updated to reflect the current major version of Roo, and features a number of interesting Roo

capabilities:

• Standard MVC web application with JPA entities etc

• Spring Security usage, including login page customisation

• Sending emails via SMTP

• Testing both via JUnit and Selenium

• Usage with Eclipse

Beginning With Roo: The Tutorial

1.3.0.RELEASE 13

• Creating a WAR for deployment

You can find the wedding tutorial at http://blog.springsource.com/2009/05/27/roo-part-2/.

2.3. Tutorial Application Details

To demonstrate the development of an application using Spring Roo we will create a Web site for a

Pizza Shop. The requirements for the Roo Pizza Shop application include the ability to create new

Pizza types by the staff of the Roo Pizza Shop. A pizza is composed of a base and one or more toppings.

Furthermore, the shop owner would like to allow online orders of Pizzas by his customers for delivery.

After this short discussion with the Pizza Shop owner, we have created a simple class diagram for the

initial domain model:

While this class diagram represents a simplified model of the problem domain for the pizza shop

problem domain, it is a good starting point for the project at hand in order to deliver a first prototype of

the application to the Pizza Shop owner. Later tutorials will expand this domain model to demonstrate

more advanced features of Spring Roo.

2.4. Step 1: Starting a Typical Project

Now that we have spoken with our client (the Pizza Shop owner) to gather the first ideas and

requirements for the project we can get started with the development of the project. After installing a

JDK, Spring Roo and Maven, we create a new directory for our project:

> mkdir pizza

> cd pizza

pizza>

Next, we start Spring Roo and type 'hint' to obtain context-sensitive guidance from the Roo shell:

pizza> roo

 ____ ____ ____

 / __ \/ __ \/ __ \

 / /_/ / / / / / / /

 / _, _/ /_/ / /_/ /

/_/ |_|____/____/ 1.2.1.RELEASE [rev 6eae723]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.

roo>

roo> hint

Welcome to Roo! We hope you enjoy your stay!

Before you can use many features of Roo, you need to start a new project.

To do this, type 'project' (without the quotes) and then hit TAB.

http://blog.springsource.com/2009/05/27/roo-part-2/

Beginning With Roo: The Tutorial

1.3.0.RELEASE 14

Enter a --topLevelPackage like 'com.mycompany.projectname' (no quotes).

When you've finished completing your --topLevelPackage, press ENTER.

Your new project will then be created in the current working directory.

Note that Roo frequently allows the use of TAB, so press TAB regularly.

Once your project is created, type 'hint' and ENTER for the next suggestion.

You're also welcome to visit http://forum.springframework.org for Roo help.

roo>

There are quite a few usability features within the Roo shell. After typing hint you may have noticed

that this command guides you in a step-by-step style towards the completion of your first project. Or

if you type help you will see a list of all commands available to you in the particular context you

are in. In our case we have not created a new project yet so the help command only reveals higher

level commands which are available to you at this stage. To create an actual project we can use the

project command:

roo> project --topLevelPackage com.springsource.roo.pizzashop

Created ROOT/pom.xml

Created SRC_MAIN_RESOURCES

Created SRC_MAIN_RESOURCES/log4j.properties

Created SPRING_CONFIG_ROOT

Created SPRING_CONFIG_ROOT/applicationContext.xml

com.springsource.roo.pizzashop roo>

When you used the project command, Roo created you a Maven pom.xml file as well as a Maven-

style directory structure. The top level package you nominated in this command was then used as the

<groupId> within the pom.xml. When typing later Roo commands, you can use the "~" shortcut key to

refer to this top-level-package (it is read in by the Roo shell from the pom.xml each time you load Roo).

The following folder structure now exists in your file system:

For those familiar with Maven you will notice that this folder structure follows standard Maven

conventions by creating separate folders for your main project resources and tests. Roo also installs a

http://maven.apache.org/

Beginning With Roo: The Tutorial

1.3.0.RELEASE 15

default application context and a log4j configuration for you. Finally, the project pom file contains all

required dependencies and configurations to get started with our Pizza Shop project.

Once the project structure is created by Roo you can go ahead and install a persistence configuration

for your application. Roo leverages the Java Persistence API (JPA) which provides a convenient

abstraction to achieve object-relational mapping. JPA takes care of mappings between your persistent

domain objects (entities) and their underlying database tables. To install or change the persistence

configuration in your project you can use the jpa setup command (note: try using the <TAB> as often

as you can to auto-complete your commands, options and even obtain contextual help):

com.springsource.roo.pizzashop roo> hint

Roo requires the installation of a persistence configuration,

for example, JPA or MongoDB.

For JPA, type 'jpa setup' and then hit TAB three times.

We suggest you type 'H' then TAB to complete "HIBERNATE".

After the --provider, press TAB twice for database choices.

For testing purposes, type (or TAB) HYPERSONIC_IN_MEMORY.

If you press TAB again, you'll see there are no more options.

As such, you're ready to press ENTER to execute the command.

Once JPA is installed, type 'hint' and ENTER for the next suggestion.

Similarly, for MongoDB persistence, type 'mongo setup' and ENTER.

com.springsource.roo.pizzashop roo>

com.springsource.roo.pizzashop roo> jpa setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

Created SPRING_CONFIG_ROOT/database.properties

Updated SPRING_CONFIG_ROOT/applicationContext.xml

Created SRC_MAIN_RESOURCES/META-INF/persistence.xml

Updated ROOT/pom.xml [added dependencies org.hsqldb:hsqldb:1.8.0.10, org.hibernate:hibernate-core:3.6.9.Final,

org.hibernate:hibernate-entitymanager:3.6.9.Final, org.hibernate.javax.persistence:hibernate-jpa-2.0-api:1.0.1.Final,

org.hibernate:hibernate-validator:4.2.0.Final, javax.validation:validation-api:1.0.0.GA, cglib:cglib-nodep:2.2.2,

javax.transaction:jta:1.1, org.springframework:spring-jdbc:${spring.version},

org.springframework:spring-orm:${spring.version}, commons-pool:commons-pool:1.5.6, commons-dbcp:commons-dbcp:1.3]

com.springsource.roo.pizzashop roo>

So in this case we have installed Hibernate as the object-relational mapping (ORM)-provider.

Hibernate is one of ORM providers which Roo currently offers. EclipseLink, OpenJPA, and

DataNucleus represent the alternative choices. In a similar fashion we have chosen the Hypersonic

in-memory database as our target database. Hypersonic is a convenient database for Roo application

development because it relieves the developer from having to install and configure a production scale

database.

When you are ready to test or install your application in a production setting, the jpa setup command

can be repeated. This allows you to nominate a different database, or even ORM. Roo offers TAB

completion for production databases including Postgres, MySQL, Microsoft SQL Server, Oracle, DB2,

Sybase, H2, Hypersonic and more. Another important step is to edit the SRC_MAIN_RESOURCES/META-

INF/persistence.xml file and modify your JPA provider's DDL (schema management) configuration

setting so it preserves the database between restarts of your application. To help you with this, Roo

automatically lists the valid settings for your JPA provider as a comment in that file. Note that by

default your JPA provider will drop all database tables each time it reloads. As such you'll certainly

want to change this setting.

Please note: The Oracle and DB2 JDBC drivers are not available in public maven repositories. Roo

will install standard dependencies for these drivers (if selected) but you may need to adjust the version

number or package name according to your database version. You can use the following maven

command to install your driver into your local maven repository: mvn install:install-file -

Beginning With Roo: The Tutorial

1.3.0.RELEASE 16

DgroupId=com.oracle -DartifactId=ojdbc14 -Dversion=10.2.0.2 -Dpackaging=jar -Dfile=/

path/to/file (example for the Oracle driver)

2.5. Step 2: Creating Entities and Fields

Now it is time to create our domain objects and fields which we have identified in our class diagram.

First, we can use the entity jpa command to create the actual domain object. The entity jpa command

has a number of optional attributes and one required attribute which is --class. In addition to the

required --class attribute we use the --testAutomatically attribute which conveniently creates

integration tests for a domain object. So let's start with the Topping domain object:

com.springsource.roo.pizzashop roo> hint

You can create entities either via Roo or your IDE.

Using the Roo shell is fast and easy, especially thanks to the TAB completion.

Start by typing 'ent' and then hitting TAB twice.

Enter the --class in the form '~.domain.MyEntityClassName'

In Roo, '~' means the --topLevelPackage you specified via 'create project'.

After specify a --class argument, press SPACE then TAB. Note nothing appears.

Because nothing appears, it means you've entered all mandatory arguments.

However, optional arguments do exist for this command (and most others in Roo).

To see the optional arguments, type '--' and then hit TAB. Mostly you won't

need any optional arguments, but let's select the --testAutomatically option

and hit ENTER. You can always use this approach to view optional arguments.

After creating an entity, use 'hint' for the next suggestion.

com.springsource.roo.pizzashop roo>

com.springsource.roo.pizzashop roo> entity jpa --class ~.domain.Topping --testAutomatically

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping.java

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingDataOnDemand.java

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingIntegrationTest.java

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping_Roo_Configurable.aj

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping_Roo_ToString.aj

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping_Roo_Jpa_Entity.aj

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping_Roo_Jpa_ActiveRecord.aj

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingDataOnDemand_Roo_Configurable.aj

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingDataOnDemand_Roo_DataOnDemand.aj

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingIntegrationTest_Roo_Configurable.aj

Created SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingIntegrationTest_Roo_IntegrationTest.aj

You will notice that besides the creation of Java and AspectJ sources, the entity jpa command in the

Roo shell takes care of creating the appropriate folder structure in your project for the top level package

you defined earlier. You will notice that we used the '~' character as a placeholder for the project's

top level package. While this serves a convenience to abbreviate long commands, you can also tab-

complete the full top level package in the Roo shell.

As a next step we need to add the 'name' field to our Topping domain class. This can be achieved by

using the field command as follows:

~.domain.Topping roo> hint

You can add fields to your entities using either Roo or your IDE.

To add a new field, type 'field' and then hit TAB. Be sure to select

your entity and provide a legal Java field name. Use TAB to find an entity

name, and '~' to refer to the top level package. Also remember to use TAB

to access each mandatory argument for the command.

Beginning With Roo: The Tutorial

1.3.0.RELEASE 17

After completing the mandatory arguments, press SPACE, type '--' and then TAB.

The optional arguments shown reflect official JSR 303 Validation constraints.

Feel free to use an optional argument, or delete '--' and hit ENTER.

If creating multiple fields, use the UP arrow to access command history.

After adding your fields, type 'hint' for the next suggestion.

To learn about setting up many-to-one fields, type 'hint relationships'.

~.domain.Topping roo>

~.domain.Topping roo> field string --fieldName name --notNull --sizeMin 2

Updated SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping.java

Updated SRC_TEST_JAVA/com/springsource/roo/pizzashop/domain/ToppingDataOnDemand_Roo_DataOnDemand.aj

Created SRC_MAIN_JAVA/com/springsource/roo/pizzashop/domain/Topping_Roo_JavaBean.aj

As explained in the documentation by typing the hint command you can easily add constraints to

your fields by using optional attributes such as --notNull and --sizeMin 2. These attributes result

in standards-compliant JSR-303 annotations which Roo will add to your field definition in your Java

sources. You will also notice that the Roo shell is aware of the current context within which you are

using the field command. It knows that you have just created a Topping entity and therefore assumes

that the field command should be applied to the Topping Java source. Roo's current context is visible

in the shell prompt.

If you wish to add the field to a different target type you can specify the --class attribute as part of

the field command which then allows you to tab complete to any type in your project.

As a next step you can create the Base and the Pizza domain object in a similar fashion by issuing the

following commands (shell output omitted):

entity jpa --class ~.domain.Base --testAutomatically

field string --fieldName name --notNull --sizeMin 2

entity jpa --class ~.domain.Pizza --testAutomatically

field string --fieldName name --notNull --sizeMin 2

field number --fieldName price --type java.lang.Float

After adding the name and the price field to the Pizza domain class we need to deal with its

relationships to Base and Topping. Let's start with the m:m (one Pizza can have many Toppings and

one Topping can be applied to many Pizzas) relationship between Pizza and Toppings. To create

such many-to-many relationships Roo offers the field set command:

~.domain.Pizza roo> field set --fieldName toppings --type ~.domain.Topping

As you can see it is easy to define this relationship even without knowing about the exact JPA

annotations needed to create this mapping in our Pizza domain entity. In a similar way you can

define the m:1 relationship between the Pizza and Base domain entities by using the field reference
command:

~.domain.Pizza roo> field reference --fieldName base --type ~.domain.Base

In a similar fashion we can then continue to create the PizzaOrder domain object and add its fields by

leveraging the field date and field number commands:

entity jpa --class ~.domain.PizzaOrder --testAutomatically

field string --fieldName name --notNull --sizeMin 2

field string --fieldName address --sizeMax 30

field number --fieldName total --type java.lang.Float

field date --fieldName deliveryDate --type java.util.Date

field set --fieldName pizzas --type ~.domain.Pizza

http://jcp.org/en/jsr/detail?id=303

Beginning With Roo: The Tutorial

1.3.0.RELEASE 18

This concludes this step since the initial version of the domain model is now complete.

2.6. Step 3: Integration Tests

Once you are done with creating the first iteration of your domain model you naturally want to see if

it works. Luckily we have instructed Roo to create integration tests for our domain objects all along.

Hint: if you have not created any integration tests while developing your domain model you can still

easily create them using the test integration command. Once your tests are in place it is time to run

them using the perform tests command:

~.domain.PizzaOrder roo> perform tests

...

 T E S T S

Tests run: 36, Failures: 0, Errors: 0, Skipped: 0

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 3.860s

[INFO] Finished at: Tue Feb 14 18:01:45 EST 2012

[INFO] Final Memory: 6M/81M

[INFO] --

As you can see Roo has issued a Maven command (equivalent to running 'mvn test' outside the Roo

shell) in order to execute the integration tests. All tests have passed, Roo has generated 9 integration

tests per domain object resulting in a total of 36 integration tests for all 4 domain objects.

2.7. Step 4: Using Your IDE

Of course Roo projects can be used in your favorite IDE. We recommend the use of SpringSource

Tool Suite (STS), which is available at no charge from SpringSource. If you're not using SpringSource

Tool Suite, please refer to the IDE usage section of this reference guide for a more detailed discussion

of IDE interoperability.

By default Roo projects do not contain any IDE-specific workspace configuration artifacts. This means

your IDE won't be able to import your Pizza Shop project by default. The Roo shell can help us create

IDE-specific workspace configuration artifacts by means of the perform eclipse command. However,

you should not use this command if you have the m2eclipse plugin installed. If you're an STS user,

you have the m2eclipse plugin installed and as such you can skip the "perform eclipse" command. All

people not using STS or m2eclipse should use the following command:

~.domain.PizzaOrder roo> perform eclipse

...

[INFO] Adding support for WTP version 2.0.

[INFO] Using Eclipse Workspace: null

[INFO] Adding default classpath container: org.eclipse.jdt.launching.JRE_CONTAINER

[INFO] Wrote settings to /Users/stewarta/projects/roo-test/pizzashop/.settings/org.eclipse.jdt.core.prefs

[INFO] Wrote Eclipse project for "pizzashop" to /Users/stewarta/projects/roo-test/pizzashop.

[INFO] n.PizzaOrder roo>

 Javadoc for some artifacts is not available.

 Please run the same goal with the -DdownloadJavadocs=true parameter in order to check remote repositories for javadoc.

 List of artifacts without a javadoc archive:

 o org.springframework.roo:org.springframework.roo.annotations:1.2.1.RELEASE

...

http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

Beginning With Roo: The Tutorial

1.3.0.RELEASE 19

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.685s

[INFO] Finished at: Tue Feb 14 18:04:20 EST 2012

[INFO] Final Memory: 7M/81M

[INFO] --

Note, when issuing this command for the first time you can expect delays while Maven downloads

the dependencies and their sources into your local repository. Once this command has completed you

are ready to import your project into STS by clicking 'File > Import > General > Existing Projects

into Workspace'. Once your project is imported into STS you can take a look at the Java sources. For

example you can run the included JUnit tests by right clicking the pizzashop project and then selecting

'Run As > JUnit Test'.

If you're using STS or have installed m2eclipse into an Eclipse-based IDE, as mentioned earlier you

can skip the perform eclipse command entirely. In this case you simply need to select in STS/Eclipse

the 'File > Import > General > Maven Projects' menu option.

As detailed in the Application Architecture chapter of this documentation Roo projects leverage

AspectJ Intertype declarations extensively. This does not, however, affect your ability to use code

completion features offered by STS. To see code completion working in action you can open an existing

integration test and use the testMarkerMethod() method to test it. For example you can open the

BaseIntegrationTest.java source file and try it out:

Note, most of the methods visible in the STS code assist are actually not in the Java sources but rather

part of the AspectJ ITD and are therefore introduced into the Java bytecode at compile time.

2.8. Step 5: Creating A Web Tier

As a next step we want to scaffold a Web tier for the Pizza Shop application. This is accomplished

via the web mvc commands. The most convenient way to generate controllers and all relevant Web

artifacts is to use the web mvc setup command followed by the web mvc all command:

~.domain.PizzaOrder roo> web mvc setup

Beginning With Roo: The Tutorial

1.3.0.RELEASE 20

~.domain.PizzaOrder roo> web mvc all --package ~.web

This command will scan the Pizza Shop project for any domain entities and scaffold a Spring MVC

controller for each entity detected. The --package attribute is needed to specify in which package the

controllers should be installed. This command can be issued from your normal Roo shell or from the

Roo shell, which ships with STS. In order to use the integrated Roo shell within STS you need to right

click on the pizzashop application and select 'Spring Tools > Open Roo Shell'.

Note, that with the web mvc setup command the nature of the project changes from a normal Java

project nature to a Web project nature in STS. This command will also add additional dependencies

such as Spring MVC, Tiles, etc to your project. In order to update the project classpath within STS with

these new dependencies you can issue 'perform eclipse' again, followed by a project refresh in STS.

All newly added Web artifacts which are needed for the view scaffolding can be found under the src/

main/webapp folder. This folder includes graphics, cascading style sheets, Java Server pages, Tiles

configurations and more. The purpose of these folders is summarized in the UI customization section.

The Roo generated Spring MVC controllers follow the REST pattern as much as possible by leveraging

new features introduced with the release of Spring Framework v3. The following URI - Resource

mappings are applied in Roo generated controllers:

2.9. Step 6: Loading the Web Server

To deploy your application in a Web container during project development you have several options

available:

• Deploy from your shell / command line (without the need to assemble a war archive):

• run 'mvn tomcat:run' in the root of your project (not inside the Roo shell) to deploy to a Tomcat

container

• run 'mvn jetty:run' in the root of your project (not inside the Roo shell) to deploy to a Jetty

container

• Deploy to a integrated Web container configured in STS:

http://tomcat.apache.org/
http://www.eclipse.org/jetty/

Beginning With Roo: The Tutorial

1.3.0.RELEASE 21

• Drag your project to the desired Web container inside the STS server view

• Right-click your project and select 'Run As > Run on Server' to deploy to the desired Web

container

After selecting your preferred deployment method you should see the Web container starting and the

application should be available under the following URL http://localhost:8080/pizzashop

2.10. Securing the Application

As discussed with the Pizza Shop owner we need to control access to certain views in the Web frontend.

Securing access to different views in the application is achieved by installing the Spring Security addon

via the security setup command:

~.web roo> security setup

Created SPRING_CONFIG_ROOT/applicationContext-security.xml

Created SRC_MAIN_WEBAPP/WEB-INF/views/login.jspx

Updated SRC_MAIN_WEBAPP/WEB-INF/views/views.xml

Updated ROOT/pom.xml [added property 'spring-security.version' = '3.1.0.RELEASE'; added dependencies

org.springframework.security:spring-security-core:${spring-security.version},

org.springframework.security:spring-security-config:${spring-security.version},

org.springframework.security:spring-security-web:${spring-security.version},

org.springframework.security:spring-security-taglibs:${spring-security.version}]

Updated SRC_MAIN_WEBAPP/WEB-INF/web.xml

Updated SRC_MAIN_WEBAPP/WEB-INF/spring/webmvc-config.xml

Note, the Roo shell will hide the security setup command until you have created a Web layer. As

shown above, the security setup command manages the project pom.xml file. This means additional

dependencies have been added to the project. To add these dependencies to the STS workspace you

should run the perform eclipse command again followed by a project refresh (if you're using STS

or m2eclipse, the "perform eclipse" command should be skipped as it will automatically detect and

handle the addition of Spring Security to your project).

http://localhost:8080/pizzashop

Beginning With Roo: The Tutorial

1.3.0.RELEASE 22

In order to secure the views for the Topping, Base, and Pizza resources in the Pizza Shop application

you need to open the applicationContext-security.xml file in the src/main/resources/META-

INF/spring folder:

<!-- HTTP security configurations -->

<http auto-config="true" use-expressions="true">

 <form-login login-processing-url="/static/j_spring_security_check" login-page="/login" #

 authentication-failure-url="/login?login_error=t"/>

 <logout logout-url="/static/j_spring_security_logout"/>

 <!-- Configure these elements to secure URIs in your application -->

 <intercept-url pattern="/pizzas/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/toppings/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/bases/**" access="hasRole('ROLE_ADMIN')"/>

 <intercept-url pattern="/resources/**" access="permitAll" />

 <intercept-url pattern="/static/**" access="permitAll" />

 <intercept-url pattern="/**" access="permitAll" />

</http>

As a next step you can use the Spring Security JSP tag library to restrict access to the relevant menu

items in the menu.jspx file:

<div xmlns:jsp="..." xmlns:sec="http://www.springframework.org/security/tags" id="menu" version="2.0">

 <jsp:directive.page contentType="text/html;charset=UTF-8"/>

 <jsp:output omit-xml-declaration="yes"/>

 <menu:menu id="_menu" z="nZaf43BjUg1iM0v70HJVEsXDopc=">

 <sec:authorize ifAllGranted="ROLE_ADMIN">

 <menu:category id="c_topping" z="Xm13w68rCIyzL6WIzqBtcpfiNQU=">

 <menu:item id="i_topping_new" .../>

 <menu:item id="i_topping_list" .../>

 </menu:category>

 <menu:category id="c_base" z="yTpmmNMm/hWoy3yf+aPcdUX2At8=">

 <menu:item id="i_base_new" .../>

 <menu:item id="i_base_list" .../>

 </menu:category>

 <menu:category id="c_pizza" z="mXqKC1ELexS039/pkkCrZVcSry0=">

 <menu:item id="i_pizza_new" .../>

 <menu:item id="i_pizza_list" .../>

 </menu:category>

 </sec:authorize>

 <menu:category id="c_pizzaorder" z="gBYiBODEJrzQe3q+el5ktXISc4U=">

 <menu:item id="i_pizzaorder_new" .../>

 <menu:item id="i_pizzaorder_list" .../>

 </menu:category>

 </menu:menu>

</div>

This leaves the pizza order view visible to the public. Obviously the delete and the update use case

for the pizza order view are not desirable. The easiest way to take care of this is to adjust the

@RooWebScaffold annotation in the PizzaOrderController.java source:

@RooWebScaffold(path = "pizzaorder",

 formBackingObject = PizzaOrder.class,

 delete=false,

 update=false)

This will trigger the Roo shell to remove the delete and the update method from the

PizzaOrderController and also adjust the relevant view artifacts.

With these steps completed you can restart the application and the 'admin' user can navigate to http://

localhost:8080/pizzashop/login to authenticate.

http://localhost:8080/pizzashop/login
http://localhost:8080/pizzashop/login

Beginning With Roo: The Tutorial

1.3.0.RELEASE 23

2.11. Customizing the Look & Feel of the Web UI

Roo generated Web UIs can be customized in various ways. To find your way around the installed

Web-tier artifacts take a look at the following table:

The easiest way to customize the look & feel of the Roo Web UI is to change CSS and image resources

to suit your needs. The following look & feel was created for the specific purpose of the Pizza Shop

application:

Spring Roo also configures theming support offered by Spring framework so you can leverage this

feature with ease.

To achieve a higher level of customization you can change the default Tiles template (WEB-INF/

layouts/default.jspx) and adjust the JSP pages (WEB-INF/views/*.jspx). WIth release 1.1 of Spring

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-themeresolver

Beginning With Roo: The Tutorial

1.3.0.RELEASE 24

Roo jspx artifacts can now be adjusted by the user while Roo can still make adjustments as needed if

domain layer changes are detected. See the JSP Views section for details.

Furthermore the Spring Roo 1.1 release introduced a set of JSP tags which not only reduce the

scaffolded jspx files by 90% but also offer the most flexible point for view customization. Roo will

install these tags into the user project where they can be accessed and customized to meet specific

requirements of the project. For example it would be fairly easy to remove the integrated Spring JS /

Dojo artifacts and replace them with your JS framework of choice. To make these changes available

for installation in other projects you can create a simple add-on which replaces the default tags installed

by Roo with your customized tags.

2.12. Selenium Tests

Roo offers a core addon which can generate Selenium test scripts for you. You can create the Selenium

scripts by using the selenium test command. Tests are generated for each controller and are integrated

in a test suite:

~.web roo> selenium test --controller ~.web.ToppingController

~.web roo> selenium test --controller ~.web.BaseController

~.web roo> selenium test --controller ~.web.PizzaController

~.web roo> selenium test --controller ~.web.PizzaOrderController

The generated tests are located in the src/main/webapp/selenium folder and can be run via the

following maven command (executed from command line, not the Roo shell):

pizza> mvn selenium:selenese

Running the maven selenium addon will start a new instance of the FireFox browser and run tests

against the Pizza Shop Web UI by using Roo generated seed data.

Please note that the maven selenium plugin configured in the project pom.xml assumes that the FireFox

Web browser is already installed in your environment. Running the maven selenium plugin also

assumes that your application is already started as discussed in step 6. Finally, there are limitations

with regards to locales used by the application. Please refer to the known issues section for details.

2.13. Backups and Deployment

One other very useful command is the backup command. Issuing this command will create you a

backup of the current workspace with all sources, log files and the script log file (excluding the target

directory):

~.web roo> backup

Created ROOT/pizzashop_2012-02-14_18:10:19.zip

Backup completed in 35 ms

~.web roo>

Finally, you may wish to deploy your application to a production Web container. For this you can

easily create a war archive by taking advantage of the perform package command:

~.web roo> perform package

[INFO] Scanning for projects...

[INFO] --

[INFO] Building pizzashop

[INFO] task-segment: [package]

http://seleniumhq.org/
http://www.mozilla.com/en-US/firefox/firefox.html

Beginning With Roo: The Tutorial

1.3.0.RELEASE 25

[INFO] --

...

[INFO] [war:war {execution: default-war}]

[INFO] Exploding webapp...

[INFO] Assembling webapp pizzashop in /Users/stewarta/projects/roo-test/pizzashop/target/pizzashop-0.1.0-SNAPSHOT

[INFO] Copy webapp webResources to /Users/stewarta/projects/roo-test/pizzashop/target/pizzashop-0.1.0-SNAPSHOT

[INFO] Generating war /Users/stewarta/projects/roo-test/pizza/target/pizzashop-0.1.0-SNAPSHOT.war

[INFO] Building war: /Users/stewarta/projects/roo-test/pizza/target/pizzashop-0.1.0-SNAPSHOT.war

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 5.881s

[INFO] Finished at: Tue Feb 14 18:07:54 EST 2012

[INFO] Final Memory: 8M/81M

[INFO] --

~.web roo>

This command produces your war file which can then be easily copied into your production Web

container.

2.14. Where To Next

Congratuations! You've now completed the Roo Pizza Shop tutorial. You're now in a good position to

try Roo for your own projects. While reading the next few chapters of this reference guide will help

you understand more about how to use Roo, we suggest the following specific sections if you'd like

to know more about commonly-used Roo add-ons:

• Dynamic Finders

• Spring Web Flow addon

• Logging addon

• JMS addon

• Email (SMTP) addon

1.3.0.RELEASE 26

Chapter 3. Application Architecture

In this chapter we'll introduce the architecture of Roo-created projects. In later chapters we'll cover

the architecture of Roo itself.

This chapter focuses on web applications created by Roo, as opposed to add-on projects.

3.1. Architectural Overview

Spring Roo focuses on the development of enterprise applications written in Java. In the current version

of Roo these applications typically will have a relational database backend, Java Persistence API (JPA)

persistence approach, Spring Framework dependency injection and transactional management, JUnit

tests, a Maven build configuration and usually a Spring MVC-based front-end that uses JSP for its

views. As such a Roo-based application is like most modern Java-based enterprise applications.

While most people will be focusing on developing these Spring MVC-based web applications, it's

important to recognise that Roo does not impose any restrictions on the sort of Java applications that

can be built with it. Even with Roo 1.0.0 it was easy to build any type of self-contained application.

Some examples of the types of requirements you can easily address with the current version of Roo

include (but are not limited to):

• Listening for messages on a JMS queue and sending replies over JMS or SMTP (Roo can easily set

up JMS message producers, consumers and SMTP)

• Writing a services layer (perhaps annotated with Spring's @Service stereotype annotation) and

exposing it using a remoting protocol to a rich client (Spring's remoting services will help here)

• Executing a series of predefined actions against the database, perhaps in conjunction with Spring's

new @Scheduled or @Async timer annotations

• Experimentation with the latest Spring and AspectJ features with minimal time investment

One of the major differences between Roo and traditional, hand-written applications is we don't add

layers of abstraction unnecessarily. Most traditional Java enterprise applications will have a DAO

layer, services layer, domain layer and controller layer. In a typical Roo application you'll only use

an entity layer (which is similar to a domain layer) and a web layer. As indicated by the list above, a

services layer might be added if your application requires it, although a DAO layer is extremely rarely

added. We'll look at some of these layering conventions (and the rationale for them) as we go through

the rest of this chapter.

3.2. Critical Technologies

Two technologies are very important in all Roo projects, those being AspectJ and Spring. We'll have

a look at how Roo-based applications use these technologies in this section.

3.2.1. AspectJ

AspectJ is a powerful and mature aspect oriented programming (AOP) framework that underpins many

large-scale systems. Spring Framework has offered extensive support for AspectJ since 2004, with

Spring 2.0 adopting AspectJ's pointcut definition language even for expressing Spring AOP pointcuts.

http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/beans.html#beans-stereotype-annotations
http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/remoting.html
http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/scheduling.html#scheduling-annotation-support

Application Architecture

1.3.0.RELEASE 27

Many of the official Spring projects offer support for AspectJ or are themselves heavily dependent

on it, with several examples including Spring Security (formerly Acegi Security System for Spring),

Spring Insight, SpringSource tc Server, SpringSource dm Server, Spring Enterprise and Spring Roo.

While AspectJ is most commonly known for its aspect oriented programming (AOP) features such as

applying advice at defined pointcuts, Roo projects use AspectJ's powerful inter-type declaration (ITD)

features. This is where the real magic of Roo comes from, as it allows us to code generate members

(artifacts like methods, fields etc) in a different compilation unit (i.e. source file) from the normal .java

code you'd write as a developer. Because the generated code is in a separate file, we can maintain

that file's lifecycle and contents completely independently of whatever you are doing to the .java files.

Your .java files do not need to do anything unnatural like reference the generated ITD file and the

whole process is completely transparent.

Let's have a look at how ITDs work. In a new directory, type the following commands and note the

console output:

roo> project --topLevelPackage com.aspectj.rocks

roo> jpa setup --database HYPERSONIC_IN_MEMORY --provider HIBERNATE

roo> entity jpa --class ~.Hello

Created SRC_MAIN_JAVA/com/aspectj/rocks

Created SRC_MAIN_JAVA/com/aspectj/rocks/Hello.java

Created SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_JpaActiveRecord.aj

Created SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_JpaEntity.aj

Created SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_ToString.aj

Created SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_Configurable.aj

roo> field string --fieldName comment

Managed SRC_MAIN_JAVA/com/aspectj/rocks/Hello.java

Managed SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_JavaBean.aj

Managed SRC_MAIN_JAVA/com/aspectj/rocks/Hello_Roo_ToString.aj

Notice how there is a standard Hello.java file, as well as a series of Hello_Roo_*.aj files. Any file

ending in *_Roo_*.aj is an AspectJ ITD and will be managed by Roo. You should not edit these files

directly, as Roo will automatically maintain them (this includes even deleting files that aren't required,

as we'll see shortly).

The Hello.java is just a normal Java file. It looks like this:

package com.aspectj.rocks;

import org.springframework.roo.addon.javabean.RooJavaBean;

import org.springframework.roo.addon.tostring.RooToString;

import org.springframework.roo.addon.entity.RooJpaActiveRecord;

@RooJavaBean

@RooToString

@RooJpaActiveRecord

public class Hello {

 private String comment;

}

As shown, there's very little in the .java file. There are some annotations, plus of course the field we

added. Note that Roo annotations are always source-level retention, meaning they're not compiled into

your .class file. Also, as per our usability goals you'll note that Roo annotations also always start

with @Roo* to help you find them with code assist.

By this stage you're probably wondering what the ITD files look like. Let's have a look at one of them,

Hello_Roo_ToString.aj:

Application Architecture

1.3.0.RELEASE 28

package com.aspectj.rocks;

import org.apache.commons.lang3.builder.ReflectionToStringBuilder;

import org.apache.commons.lang3.builder.ToStringStyle;

privileged aspect Hello_Roo_ToString {

 public String Hello.toString() {

 return ReflectionToStringBuilder.toString(this, ToStringStyle.SHORT_PREFIX_STYLE);

 }

}

Notice how the ITD is very similar to Java code. The main differences are that it is declared with

"privileged aspect", plus each member identifies the target type (in this case it is "Hello.toString",

which means add the "toString" method to the "Hello" type). The compiler will automatically

recognize these ITD files and cause the correct members to be compiled into Hello.class. We can see

that quite easily by using Java's javap command. All we need to do is run the compiler and view the

resulting class. From the same directory as you created the project in, enter the following commands

and observe the final output:

$ mvn compile

$ javap -classpath target/classes/.:target/test-classes/. com.aspectj.rocks.Hello

Compiled from "Hello.java"

public class com.aspectj.rocks.Hello extends java.lang.Object implements org.springframework.beans.factory.aspectj.ConfigurableObject{

 transient javax.persistence.EntityManager entityManager;

 public com.aspectj.rocks.Hello();

 public static java.lang.String ajcgetcomment(com.aspectj.rocks.Hello);

 public static void ajcsetcomment(com.aspectj.rocks.Hello, java.lang.String);

 public static java.lang.Long ajcgetid(com.aspectj.rocks.Hello);

 public static void ajcsetid(com.aspectj.rocks.Hello, java.lang.Long);

 public static java.lang.Integer ajcgetversion(com.aspectj.rocks.Hello);

 public static void ajcsetversion(com.aspectj.rocks.Hello, java.lang.Integer);

 static {};

 public static long countHelloes();

 public static final javax.persistence.EntityManager entityManager();

 public static java.util.List findAllHelloes();

 public static com.aspectj.rocks.Hello findHello(java.lang.Long);

 public static java.util.List findHelloEntries(int, int);

 public void flush();

 public java.lang.String getComment();

 public java.lang.Long getId();

 public java.lang.Integer getVersion();

 public com.aspectj.rocks.Hello merge();

 public void persist();

 public void remove();

 public void setComment(java.lang.String);

 public void setId(java.lang.Long);

 public void setVersion(java.lang.Integer);

 public java.lang.String toString();

}

While the javap output might look a little daunting at first, it represents all the members that

Roo has added (via AspectJ ITDs) to the original Hello.java file. Notice there isn't just the

toString method we saw in the earlier ITD, but we've also made the Hello class implement

Spring's ConfigurableObject interface, provided access to a JPA EntityManager, included a range

of convenient persistence methods plus even getters and setters. All of these useful features are

automatically maintained in a round-trip compatible manner via the ITDs.

A careful reader might be wondering about the long field names seen for introduced fields. You can

see that these field names start with "ajc$" in the output above. The reason for this is to avoid name

Application Architecture

1.3.0.RELEASE 29

collisions with fields you might have in the .java file. The good news is that you won't ever need

to deal with this unless you're trying to do something clever with reflection. It's just something to be

aware of for introduced fields in particular. Note that the names of methods and constructors are never

modified.

Naturally as a normal Roo user you won't need to worry about the internals of ITD source code and

the resulting .class files. Roo automatically manages all ITDs for you and you never need deal with

them directly. It's just nice to know how it all works under the hood (Roo doesn't believe in magic!).

The benefit of this ITD approach is how easily and gracefully Roo can handle code generation for you.

To see this in action, go and edit the Hello.java in your favourite text editor with Roo

running. Do something simple like add a new field. You'll notice the Hello_Roo_ToString.aj and

Hello_Roo_JavaBean.aj files are instantly and automatically updated by Roo to include your new

field. Now go and write your own toString method in the .java file. Notice Roo deletes the

Hello_Roo_ToString.aj file, as it detects your toString method should take priority over a generated

toString method. But let's say you want a generated toString as well, so change the Hello.java's

@RooToString annotation to read @RooToString(toStringMethod="generatedToString"). Now

you'll notice the Hello_Roo_ToString.aj file is immediately re-created, but this time it introduces

a generatedToString method instead of the original toString. If you comment out both fields in

Hello.java you'll also see that Roo deletes both ITDs. You can also see the same effect by quitting

the Roo shell, making any changes you like, then restarting the Roo shell. Upon restart Roo will

automatically perform a scan and discover if it needs to make any changes.

Despite the admittedly impressive nature of ITDs, AspectJ is also pretty good at aspect oriented

programming features like pointcuts and advice! To this end Roo applications also use AspectJ for all

other AOP requirements. It is AspectJ that provides the AOP so that classes are dependency injected

with singletons when instantiated and transactional services are called as part of method invocations.

All Roo applications are preconfigured to use the Spring Aspects project, which ships as part of Spring

Framework and represents a comprehensive "aspect library" for AspectJ.

3.2.2. Spring

Spring Roo applications all use Spring. By "Spring" we not only mean Spring Framework, but also the

other Spring projects like Spring Security and Spring Web Flow. Of course, only Spring Framework

is installed into a user project by default and there are fine-grained commands provided to install each

additional Spring project beyond Spring Framework.

All Roo applications use Spring Aspects, which was mentioned in the AspectJ section and ensures

Spring Framework's @Configurable dependency injection and transactional advice is applied.

Furthermore, Roo applications use Spring's annotation-driven component scanning by default and

also rely on Spring Framework for instantiation and dependency injection of features such as JPA

providers and access to database connection pools. Many of the optional features that can be used

in Roo applications (like JMS and SMTP messaging) are also built upon the corresponding Spring

Framework dependency injection support and portable service abstractions.

Those Roo applications that include a web controller will also receive Spring Framework 3's MVC

features such as its conversion API, web content negotiation view resolution and REST support. It is

possible (and indeed encouraged) to write your own web Spring MVC controllers in Roo applications,

and you are also free to use alternate page rendering technologies if you wish (i.e. not just JSP).

Generally speaking Roo will not modify any Spring-related configuration or setting file (e.g.

properties) unless specifically requested via a shell command. Roo also ensures that whenever it

Application Architecture

1.3.0.RELEASE 30

creates, modifies or deletes a file it explicitly tells you about this via a shell message. What this means

is you can safely edit your Spring application context files at any time and without telling Roo. This

is very useful if the default configuration offered by Roo is unsuitable for your particular application's

needs.

Because Spring projects are so extensively documented, and Roo just uses Spring features in the normal

manner, we'll refrain from duplicating Spring's documentation in this section. Instead please refer to

the excellent Spring documentation for guidance, which can be found in the downloadable distribution

files and also on the Spring web site.

3.3. Entity Layer

When people use Roo, they will typically start a new project using the steps detailed in the Beginning

With Roo: The Tutorial chapter. That is, they'll start by creating the project, installing some sort of

persistence system, and then beginning to create entities and add fields to them. As such, entities and

fields represent the first point in a Roo project that you will be expressing your problem domain.

The role of an entity in your Roo-based application is to model the persistent "domain layer" of your

system. As such, a domain object is specific to your problem domain but an entity is a special form

of a domain object that is stored in the database. By default a single entity will map to a single table

in your database, and a single field within your entity class will map to a single column within the

corresponding table. However, like most things in Roo this is easily customised using the relevant

standard (in this case, JPA annotations). Indeed most of the common customisation options (like

specifying a custom column or table name etc) can be expressed directly in the relevant Roo command,

freeing you from even needing to know which annotation(s) should be used.

Let's consider a simple entity that has been created using the entity jpa command and following it with

a single field command:

package com.springsource.vote.domain;

import org.springframework.roo.addon.javabean.RooJavaBean;

import org.springframework.roo.addon.tostring.RooToString;

import org.springframework.roo.addon.entity.RooJpaActiveRecord;

import javax.validation.constraints.NotNull;

import javax.validation.constraints.Size;

@RooJavaBean

@RooToString

@RooJpaActiveRecord

public class Choice {

 @NotNull

 @Size(min = 1, max = 30)

 private String namingChoice;

 @Size(max = 80)

 private String description;

}

The above entity is simply a JPA entity that contains two fields. The two fields are annotated with

JavaBean Validation API (JSR 303) annotations, which are useful if your JPA provider supports this

standard (as is the case if you nominate Hibernate as your JPA provider) or you are using a Roo-

scaffolded web application front end (in which case Roo will use Spring Framework 3's JSR 303

support). Of course you do not need to use the JavaBean Validation API annotations at all, but if you

http://spring.io/docs

Application Architecture

1.3.0.RELEASE 31

would like to use them the relevant Roo field commands provide tab-completion compatible options

for each. The first time you use one of these Roo field commands, Roo will add required JavaBean

Validation API libraries to your project (i.e. these libraries will not be in your project until you decide

to first use JavaBean Validation).

What's interesting about the above entity is what you can actually do with it. There are a series of

methods automatically added into the Choice.class courtesy of Roo code-generated and maintained

AspectJ ITDs. These include static methods for retrieving instances of Choice, JPA facade methods

for persisting, removing, merging and flushing the entity, plus accessors and mutators for both the

identifier and version properties. You can fine-tune these settings by modifying attributes on the

@RooJpaActiveRecord annotation. You can also have Roo remove these services by simply removing

the @RooJpaActiveRecord annotation from the class, in which case you'll be left with a normal JPA

@Entity that you'll need to manage by hand (e.g. provide your own persistence methods, identifier,

version etc).

The @RooJavaBean annotation causes an accessor and mutator (getter and setter) to automatically be

generated for each field in the class. These accessors and mutators are automatically maintained in

an AspectJ ITD by Roo. If you write your own accessor or mutator in the normal .java file, Roo will

automatically remove the corresponding generated method from the ITD. You can also remove the

@RooJavaBean annotation if you don't want any generated accessors or mutators (although those related

to the version and identifier fields will remain, as they are associated with @RooJpaActiveRecord

instead of @RooJavaBean).

Finally, the @RooToString annotation causes Roo to create and maintain a public String toString()

method in a separate ITD. This method currently is used by any scaffolded web controllers if they

need to display a related entity. The generated method takes care to avoid circular references that

are commonly seen in bidirectional relationships involving collections. The method also formats Java

Calendar objects in an attractive manner. As always, you can write your own toString() method by

hand and Roo will automatically remove its generated toString() method, even if you still have the

@RooToString annotation present. You can of course also remove the @RooToString annotation if you

no longer wish to have a generated toString() method.

Before leaving this discussion on entities, it's worth mentioning that you are free to create your own

entity .java classes by hand. You do not need to use the Roo shell commands to create entities or

maintain their fields - just use any IDE. Also, you are free to use the @RooToString or @RooJavaBean

(or both) annotations on any class you like. This is especially useful if you have a number of domain

objects that are not persisted and are therefore not entities. Roo can still help you with those objects.

3.4. Web Layer

Roo 1.0 can optionally provide a scaffolded Spring MVC web layer. The scaffolded MVC web layer

features are explored in some depth in the Beginning With Roo: The Tutorial chapter, including how

to customise the appearance. From an architectural perspective, the scaffolded layer includes a number

of URL rewriting rules to ensure requests can be made in accordance with REST conventions. Roo's

scaffolding model also includes Apache Tiles, Spring JavaScript, plus ensures easy setup of Spring

Security with a single command.

In Spring Roo 1.1 we also added comprehensive support for Google Web Toolkit (GWT). This allows

you to build Generation IV web HTML5-based web front-ends. These front-ends access the Spring

backend using highly optimized remoting protocols, and the GWT application represents the GWT

Application Architecture

1.3.0.RELEASE 32

team's recommended best practice architecture. In fact, the GWT team at Google wrote most of the

Roo GWT add-on, so you can be sure it uses the best GWT 2.1 features.

Scaffolded web controllers always delegate directly to methods provided on an @RooJpaActiveRecord

class. For maximum compatibility with scaffolded controllers, it is recommended to observe the default

identifier and version conventions provided by @RooJpaActiveRecord implementations. If you write

a web controller by hand (perhaps with the assistance of the web mvc controller command), it is

recommended you also use the methods directly exposed on entities. Most Roo applications will place

their business logic between the entities and web controllers, with only occasional use of services

layers. Please refer to the services layer section for a more complete treatment of when you'd use a

services layer.

3.5. Optional Services Layer

As discussed at the start of this chapter, web applications are the most common type of application

created with Roo 1.0.0. A web application will rarely require a services layer, as most logic can be

placed in the web controller handle methods and the remainder in entity methods. Still, a services layer

makes sense in specific scenarios such as:

• There is business logic that spans multiple entities and that logic does not naturally belong in a

specific entity

• You need to invoke business logic outside the scope of a natural web request (e.g. a timer task)

• Remote client access is required and it is therefore more convenient to simply expose the methods

via a remoting protocol

• An architectural policy requires the use of a services layer

• A higher level of cohesion is sought in the web layer, with the web layer solely responsible for

HTTP-related management and the services layer solely responsible for business logic

• A greater level of testing is desired, which is generally easier to mock than simulating web requests

• it is preferred to place transactional boundaries and security authorization metadata on the services

layer (as opposed to a web controller)

As shown, there are a large number of reasons why services layers remain valuable. However, Roo

does not code generate services layers because they are not strictly essential to building a normal web

application and Roo achieves separation of concern via its AspectJ ITD-based architecture.

If you would like to use a services layer, since release 1.2.0 Roo offers automatic service layer

integration for your application. Please refer to the service layer section in the application layering

chapter for further details.

3.6. Goodbye DAOs

One change many existing JEE developers will notice when using Roo-based applications is that there

is no DAO layer (or "Repository" layer). As with the services layer, we have removed the DAO layer

because it is not strictly essential to creating the typical web applications that most people are trying

to build.

Application Architecture

1.3.0.RELEASE 33

If we reflect for a moment on the main motivations for DAOs, it is easy to see why these are not

applicable in Roo applications:

• Testing: In a normal application a DAO provides an interface that could be easily stubbed as part of

unit testing. The interesting point about testing is that most people use mocking instead of stubbing

in modern applications, making it attractive to simply mock the persistence method or two that you

actually require for a test (rather than the crudeness of stubbing an entire DAO interface). In Roo-

based applications you simply mock the persistence-related methods that have been introduced to

the entity. You can use normal mocking approaches for the instance methods on the Roo entity, and

use Spring Aspect's @MockStaticEntityMethods support for the static finder methods.

• Separation of concern: One reason for having a DAO layer is that it allows a higher cohesion object-

oriented design to be pursued. The high cohesion equates to a separation of concern that reduces the

conceptual weight of implementing the system. In a Roo-based application separation of concern

is achieved via the separate ITDs. The conceptual weight is also reduced because Roo handles the

persistence methods rather than force the programmer to deal with them. Therefore separation of

concern still exists in a Roo application without the requirement for a DAO layer.

• Pluggable implementations: A further benefit of DAOs is they simplify the switching from one

persistence library to another. In modern applications this level of API abstraction is provided via

JPA. As Roo uses JPA in its generated methods, the ability to plug in an alternate implementation

is already fully supported despite there being no formal DAO layer. You can see this yourself by

issuing the jpa setup command and specifying alternate implementations.

• Non-JPA persistence: It is possible that certain entities are stored using a technology that does not

have a JPA provider. In this case Roo does not support those entities out of the box. However, if

only a small number of entities are affected by this consideration there is no reason one or more

hand-written ITDs could not be provided by the user in order to maintain conceptual parity with

the remainder of the Roo application (which probably does have some JPA). If a large number of

entities are affected, the project would probably benefit from the user writing a Roo add-on which

will automatically manage the ITDs just as Roo does for JPA.

• Security authorisation: Sometimes DAOs are used to apply security authorisation rules. It

is possible to protect persistence methods on the DAOs and therefore go relatively low

in the control flow to protecting the accessibility of entities. In practice this rarely works

well, though, as most authorisation workflows will target a use case as opposed to the

entities required to implement a use case. Further, the approach is unsafe as it is possible

to transitively acquire one entity from another without observing the authorisation rules (e.g.

person.getPartner().getChildren().get(1).setFirstName("Ben")). It is also quite crude in

that it does not support transparent persistence correctly, in that the example modification of the

first name would flush to the database without any authorisation check (assuming this mutative

operation occurred within the context of a standard transactional unit of work). While it's possible

to work around many of these issues, authorisation is far better tackled using other techniques than

the DAO layer.

• Security auditing: In a similar argument to authorisation, sometimes DAOs are advocated for

auditing purposes. For the same types of reasons expressed for authorisation, this is a suboptimal

approach. A better way is to use AOP (e.g. AspectJ field set pointcuts), a JPA flush event handle,

or a trigger-like model within the database.

• Finders: If you review existing DAOs, you'll find the main difference from one to another is the

finder methods they expose. Dynamic finders are automatically supported by Roo and introduced

Application Architecture

1.3.0.RELEASE 34

directly to the entity, relieving the user from needing DAOs for this reason. Furthermore, it is quite

easy to hand-write a finder within the entity (or an ITD that adds the finder to the entity if a separate

compilation unit is desired).

• Architectural reasons: Often people express a preference for a DAO because they've always done

it that way. While maintaining a proven existing approach is generally desirable, adopting Roo for

an application diminishes the value of a DAO layer to such an extent that it leaves little (if any)

engineering-related reasons to preserve it.

It's also worth observing that most modern RAD frameworks avoid DAO layers and add persistence

methods directly to entities. If you compare similar technologies to Roo, you will see this avoidance

of a DAO layer is commonplace, mainstream and does not cause problems.

Naturally you can still write DAOs by hand if you want to, but the majority of Roo add-ons will not

be compatible with such DAOs. As such you will not receive automated testing or MVC controllers

that understand your hand-written DAOs. Our advice is therefore not to hand write DAOs. Simply use

the entity methods provided by @RooJpaActiveRecord, as it's engineering-wise desirable and it's also

far less effort for you to write and maintain.

If you are interested in DAO support despite the above Roo offers support for different repository

layers as of release 1.2.0. Please refer to the application layering chapter for details.

3.7. Maven

3.7.1. Packaging

Roo supports a number of Maven packaging types out of the box, such as jar, war, pom, and bundle.

These are provided via Roo's PackagingProvider interface. If you wish to customise the POMs or

other artifacts that Roo generates for a given packaging type when creating a project or module, either

for one of the above packaging types or a completely different one, you can implement your own

PackagingProvider that creates exactly the files you want with the contents you want. The procedure

for doing this is as follows:

• In a new directory, start Roo and run "addon create simple" to create a simple addon.

• Delete:

• the four .java files created in src/main/java

• the two .tagx files created in src/main/resources

• Create your custom packaging class (e.g. MyPackaging.java) in your preferred package.

• Pick a unique ID for the Roo shell to use when referring to your PackagingProvider (e.g. "custom-

jar"). Do not use any of the core Maven packaging type names, as these are reserved for use by Roo.

• Make your packaging class implement the o.s.r.project.packaging.PackagingProvider

interface, either by:

• Implementing PackagingProvider directly, with full control over (but no assistance with) artifact

generation, or

Application Architecture

1.3.0.RELEASE 35

• Extending o.s.r.project.packaging.AbstractPackagingProvider to have Roo create the

POM from a template you specify, with various substitutions made automatically (e.g. groupId

and artifactId). This approach requires you to:

• Create your custom POM template in src/main/resources plus whatever package you chose

above.

• Create a public no-arg constructor that calls the AbstractPackagingProvider constructor with

the following arguments:

• The unique ID of your custom packaging type (see above).

• The Maven name of your packaging type (typically jar/war/ear/etc, but could be something

else if you've extended Maven to support custom packaging types).

• The path to your POM template relative to your concrete PackagingProvider (e.g. "my-

pom-template.xml" if it's in the same package). Note that this POM can contain as much or

as little content as you like, with the following caveats:

• It must have the standard Maven "project" root element with all the usual namespace

details.

• If you extend AbstractPackagingProvider, that class will ensure that the POM's

coordinates can be resolved either from a "parent" element or from explicit "groupId",

"artifactId", and "version" elements.

• Add the Felix annotations @Component and @Service to your concrete PackagingProvider, so that

it's detected by Roo's PackagingProviderRegistry.

• Build and install the addon in the usual way, i.e.:

• Run "mvn install" in the addon directory to create the OSGi bundle.

• Change to the directory of the project that will be using the custom packaging provider.

• Run "osgi start --url file:///path/to/addon/project/target/

com.example.foo-0.1.0.BUILD-SNAPSHOT.jar"

• Run "osgi scr list"; your custom PackagingProvider component should appear somewhere

in the list.

• Whenever you run the "project" or "module create" commands, your custom PackagingProvider's

ID should appear in the list of possible completions for the "--packaging" option

3.7.2. Multi-Module Support

Since version 1.2.0, Roo supports multi-module Maven projects, i.e. those containing multiple projects

in a nested directory structure, each with their own POM. The non-leaf POMs have "pom" packaging

and the leaf POMs usually have an artifact creation packaging (jar, war, etc). If you're not familiar with

multi-module projects and want to see how they're structured, there's an embedded multimodule.roo

script that generates a simple multi-module project; used as follows:

• At your operating system prompt, type "roo script multimodule.roo".

http://www.sonatype.com/books/mvnref-book/reference/pom-relationships-sect-pom-best-practice.html

Application Architecture

1.3.0.RELEASE 36

• Change into the "ui/mvc"" directory.

• Run "mvn tomcat:run" or "mvn jetty:run".

• Point your browser to http://localhost:8080/mvc.

The rest of this section assumes that you are familiar with multi-module projects, in particular the

difference between POM inheritance (one POM has another as its parent) and project nesting (one

project is in a sub-directory of another, i.e. is a module of that parent project).

3.7.2.1. Features

Roo's multi-module support has the following features (a formal list of Roo's Maven-related commands

appears in Appendix C):

• Roo now has the concept of a module, which in practice means a directory tree whose root contains

a Maven POM. A project consists of zero or more modules. When you run Roo from the operating

system prompt, you do so from the directory of the root module.

Once any modules exist, one of them always has the "focus", in other words will be used as the

context for any shell commands that interact with the user project (as opposed to housekeeping

commands such as "osgi ps"). For example, running the "web flow" command will add Spring

Web Flow support to the currently focused module.

• The "module focus" command, available once the project contains more than one module, changes

the currently focused module. Tab completion is available, with the module name "~" signifying

the root module.

• The "module create" command creates a new module as a sub-directory of the currently focused

module. The latter module's POM will be updated to ensure it has "pom" packaging, allowing the

Maven reactor to properly recurse the module tree at build time. Note that the newly created POM

will by default not inherit from the parent module's POM. If the new module's POM should have

a parent, specify it via the "module create" command's optional "parent" parameter. The parent

POM need not be located within the user project. A typical use case is that a development team

might have a standard base POM from which all their projects inherit, or a standard web POM from

which all their web modules inherit. As with the "project" command, the new module's Maven

packaging can be specified via the optional "packaging" parameter. Custom packaging behaviour

is supported, as described above.

3.7.2.2. Limitations

Roo's multi-module support has the following limitations:

• Limited automatic creation of dependencies between modules. If your project needs any inter-

module dependencies beyond those added by Roo, simply create them using the "dependency add"

command.

• No command for removing a module; this is in line with the absence of commands for removing

other project artifacts such as classes, enums, JSPs, and POMs. In any event, it's simple enough to do

manually; just delete the directory, delete the relevant "<module>" element from the parent module's

POM, and delete the module as a dependency from any other modules' POMs.

• One area where there's considerable scope for improvement is in the management of

dependencies in general. In an ideal Maven project, dependency information in the form of both

Application Architecture

1.3.0.RELEASE 37

"dependencyManagement" entries and live "dependency" elements themselves would be pushed as

far up the POM inheritance hierarchy as possible, in order to minimise duplication and reduce the

incidence of version conflicts. As it stands, Roo adds and removes dependencies to and from the

currently focused module in response to shell commands, regardless of what dependencies are in

effect for other modules in the project.

• Likewise, plugin management is currently quite basic. Roo adds/removes plugins to the POM of

the currently focused module with no attempt to rationalise them in concert with the POMs of other

modules (for example, two Spring MVC modules will independently have the Jetty plugin declared

in their own POMs rather than having this plugin declared in the lowest common ancestor POM).

As with dependencies (see above), this is an area in which Roo could conceivably take some of the

load off developers.

• There's no Roo command for changing a module’s packaging between two arbitrary values, as this

could require too many other changes to the user’s project. However, Roo does change a module's

packaging in two specific circumstances:

• Adding a module to the currently focused module changes the latter's packaging to "pom", as

described above under the "module create" command.

• Adding web support to a module changes its packaging to "war".

• Roo does not create any parent-child relationships between different modules’ Spring application

contexts; the user can always create these relationships manually, and Roo will not remove them.

1.3.0.RELEASE 38

Chapter 4. Usage and Conventions
In this chapter we'll introduce how to use the Roo tool itself. We'll cover typical conventions you'll

experience when using Spring Roo.

4.1. Usability Philosophy

As mentioned in earlier chapters and is easily experienced by simply using Spring Roo for a project,

we placed a great deal of emphasis on usability during Roo's design. It is our experience that a normal

enterprise Java developer is able to pass the ten minute test with Roo and build a new project without

referring to documentation. There are several conventions that we use within Roo to ensure a highly

usable experience:

• Numerous shell features which ensure the primary Roo-specific user interface is friendly and

learnable

• Only using popular, mainstream technologies and standards within Roo applications

• Ensuring Roo works with your choice of IDE or no IDE at all

• Delivering an application architecture that is easy to understand and avoids "magic"

• Making sure Roo works the way a reasonable person would expect it to

• Forgiving mistakes

The last two points are what we're going to discuss in this section.

Making sure Roo works the way you would expect it to is reflected in a number of key design

decisions that basically boil down to "you can do whatever you want, whenever you want, and Roo

will automatically work in with you". There are obviously limits to how far we can take this, but as

you use Roo you'll notice a few operational conventions that underpin this.

Let's start by looking at file conventions. Roo will never change a .java file in your project unless you

explicitly ask it to via a shell command. In particular, Roo will not modify a .java file just because

you apply an annotation. Roo also handles .xml files in the same manner. There are only two file types

that may be created, updated or deleted by Roo in an automatic manner, those being .jspx files and

also AspectJ files which match the *_Roo_*.aj wildcard.

In terms of the AspectJ files, Roo operates in a very specific manner. A given AspectJ filename

indicates the "target type" the members will be introduced into and also the add-on which governs the

file. Roo will only ever permit a given AspectJ file to be preserved if the target type exists and the

corresponding add-on requests an ITD for that target type. Nearly all add-ons will only create an ITD

if there is a "trigger annotation" on the target type, with the trigger annotation always incorporating an

@Roo prefix. As such, if you never put any @Roo annotation on a given .java file, you can be assured

Roo will never create any AspectJ ITD for that target type. Refer to the file system conventions section

for related information.

You'll also notice when using Roo that it automatically responds to changes you make outside Roo.

This is achieved by an auto-scaling file system monitoring mechanism. This basically allows you to

create, edit or delete any file within your project and if the Roo shell is running it will immediately

detect your change and take the necessary action in response. This is how round-tripping works without

you needing to include Roo as part of your build system or undertake any crude mass generation steps.

Usage and Conventions

1.3.0.RELEASE 39

What happens if the Roo shell isn't running? Will there be a problem if you forget to load it and make

a change? No. When Roo starts up it performs a full scan of your full project file system and ensures

every automatically-managed file that should be created, updated or deleted is handled accordingly.

This includes a full in-memory rebuild of each file, and a comparison with the file on disk to detect

changes. This results in a lot more robust approach than relying on relatively coarsely-grained file

system timestamp models. It also explains why if you have a very big project it can take a few moments

for the Roo shell to startup, as there is no alternative but to complete this check for actions that happened

when Roo wasn't running.

The automated startup-time scan is also very useful as you upgrade to newer versions of Roo. Often a

new version of Roo will incorporate enhancements to the add-ons that generate files in your project.

The startup-time scan will therefore automatically deliver improvements to all generated files. This is

also why you cannot edit files that Roo is responsible for managing, because Roo will simply consider

your changes as some "old format" of the file and rewrite the file in accordance with its current add-ons.

Not being able to edit the generated files may sound restrictive, as often you'll want to fine-tune just

some part of the file that Roo has emitted. In this case you can either write a Roo add-on, or more

commonly just write the method (or field or constructor etc) directly in your .java file. Roo has a

convention of detecting if any member it intends to introduce already exists in the target type, and if

it does Roo will not permit the ITD to include that member. In plain English that means if you write a

method that Roo was writing, Roo will remove the method from its generated file automatically and

without needing an explicit directive to do so. In fact the Roo core infrastructure explicitly detects

buggy add-ons that are trying to introduce members that an end user has written and it will throw an

exception to prevent the add-on from doing so.

This talk of exceptions also lets us cover the related usability feature of being forgiving. Every time

Roo changes your file system or receives a shell command, it is executed within a quasi-transactional

context that supports rollback. As a result, if anything goes wrong (such as you made a mistake when

entering a command or an add-on has a problem for whatever reason) the file system will automatically

rollback to the state it was before the change was attempted. The cascading nature of many changes (i.e.

you add a field to a .java file and that changes an AspectJ ITD and that in turn changes a web .jspx

etc) is handled in the same unit of work and therefore rolled back as an atomic group when required.

Before leaving this discussion on usability, it's probably worth pointing out that although the Roo

shell contains numerous commands, you don't need to use them. You are perfectly free to perform

any change to your file system by hand (without the help of the Roo shell). For example, there are

commands which let you create .java files or add fields to them. You can use these commands or you

can simply do this within your IDE or text editor. Roo's automatic file system monitoring will detect the

changes and respond accordingly. Just work the way you feel most comfortable - Roo will respect it.

4.2. Shell Features

Many people who first look at Roo love the shell. In fact when we first showed Roo to an internal

audience, one of the developers present said tounge-in-cheek, "That could only have come from

someone with a deep love of the Linux command line!". All jokes aside, the shell is only one part of

the Roo usability story - although it's a very important part. Here are some of the usability features

that make the shell so nice to work with:

• Tab completion: The cornerstone of command-line usability is tab assist. Hit TAB (or CTRL

+SPACE if you're in SpringSource Tool Suite) and Roo will show you the applicable options.

Usage and Conventions

1.3.0.RELEASE 40

• Command hiding: Command hiding will remove commands which do not make sense given the

current context of your project. For example, if you're in an empty directory, you can type project,

hit TAB, and see the options for creating a project. But once you've created the project, the project

command is no longer visible. The same applies for most Roo commands. This is nice as it means

you only see commands which you can actually use right now. Of course, a full list of commands

applicable to your version of Roo is available in the command index appendix and also via help.

• Contextual awareness: Roo remembers the last Java type you are working with in your current shell

session and automatically treats it as the argument to a command. You always know what Roo

considers the current context because the shell prompt will indicate this just before it writes roo>. In

the command index you might find some options which have a default value of '*'. This is the marker

which indicates "the current context will be used for this command option unless you explicitly

specify otherwise". You change the context by simply working with a different Java type (i.e. specify

an operation that involves a different Java type and the context will change to that Java type).

• Hinting: Not sure what to do next? Just use the hint command. It's the perfect lightweight substitute

for documentation if you're in a hurry!

• Inbuilt help: If you'd like to know all the options available for a given command, use the help

command. It lists every option directly within the shell.

• Automatic inline help: Of course, it's a bit of a pain to have to go to the trouble of typing help then

hitting enter if you're in the middle of typing a command. That's why we offer inline help, which

is automatically displayed whenever you press TAB. It is listed just before the completion options.

To save screen space, we only list the inline help once for a given command option. So if you type

project --template TAB TAB TAB, the first time you press TAB you'd see the inline help and

the completion options

• Scripting and script recording: Save your Roo commands and play them again later.

The scripting and script recording features are particularly nice, because they let you execute a series

of Roo commands without typing them in.

To execute a Roo script, just use the script command. When you use the script command you'll need

to indicate the script to run. We ship a number of sample scripts with Roo, as discussed earlier in the

Exploring Roo Samples section.

What if you want to create your own scripts? All you need is a text editor. The syntax of the script is

identical to what you'd type at the Roo shell. Both the Roo shell and your scripts can contain inline

comments using the ; and // markers, as well as block comments using the /* */ syntax.

A really nice script-related feature of the Roo shell is that it will automatically build a script containing

the commands you entered. This file is named log.roo and exists in your current working directory.

Here's a quick example of the contents:

// Spring Roo ENGINEERING BUILD [rev 553:554M] log opened at 2009-12-31 08:10:58

project --topLevelPackage roo.shell.is.neat

// [failed] jpa setup --database DELIBERATE_ERROR --provider HIBERNATE

jpa setup --database HYPERSONIC_IN_MEMORY --provider HIBERNATE

quit

// Spring Roo ENGINEERING BUILD [rev 553:554M] log closed at 2009-12-31 08:11:37

In the recorded script, you can see the version number, session start time and session close times are

all listed. Also listed is a command I typed that was intentionally incorrect, and Roo has turned that

Usage and Conventions

1.3.0.RELEASE 41

command into a comment within the script (prefixed with // [failed]) so that I can identify it and it

will not execute should I run the script again later. This is a great way of reviewing what you've done

with Roo, and sharing the results with others.

4.3. IDE Usage

Despite Roo's really nice shell, in reality most people develop most of their application using an IDE

or at least text editor. Roo fully expects this usage and supports it.

Before we cover how to use an IDE, it's worth mentioning that you don't strictly need one. With Roo

you can build an application at the command line, although to be honest you'll get more productivity via

an IDE if it's anything beyond a trivial application. If you would prefer to use the command line, you

can start a fresh application using the Roo shell, edit your .java and other files using any text editor,

and use the perform commands to compile, test and package your application ready for deployment.

You can even use mvn tomcat:run to execute a servlet container, and Roo add-ons let you deploy

straight to a cloud environment like Google App Engine. Again, you'll be more productive in an IDE,

but it's nice to know Roo doesn't force you to use an IDE unless you'd like to use one.

In relation to IDEs, we highly recommend that you use SpringSource Tool Suite (STS). STS is a

significantly extended version (and free!) of the pervasive Eclipse IDE. From a Roo perspective, STS

preintegrates the latest AspectJ Development Tools (AJDT) and also offers an inbuilt Roo shell. The

inbuilt Roo shell means you do not need to run the normal Roo shell if you are using STS. You'll also

have other neat Roo-IDE integation features, like the ability to press CTRL+R (or Apple+R if you're

on an Apple) and a popup will allow you to type a Roo command from anywhere within the IDE.

Another nice feature is the shell message hotlinking, which means all shell messages emitted by Roo

are actually links that you can click to open the corresponding file in an Eclipse editor. There are other

goodies too, like extra commands to deploy to SpringSource tc Server.

You'll need to use STS 2.5 if you'd like to use Roo 1.1, which at the time of writing represents the

latest version of both tools. Because the release cycle of STS and Roo differ, when you download

STS you'll generally find it includes a version of Roo that might not be the absolute latest. This is

not a problem. All you need to do is ensure you're using the latest release of STS and then within the

IDE select Window > Preferences > Spring > Roo Support. Next select "Add..." and find the directory

which contains the latest Roo release. You probably also want to tick the newly-selected Roo release,

making it the default for your projects when they're imported into STS.

Naturally Roo works well with standard Eclipse as well. All you need to do is ensure you install

the latest AspectJ Development Tools (AJDT) plugin. This will ensure code assist and incremental

compilation works well. We also recommend you go into Window > Preferences > General >

Workspace and switch on the "Refresh automatically" box. That way Eclipse will detect changes made

to the file system by the externally-running Roo shell. It's also recommended to install the m2eclipse

plugin, which is automatically included if you use STS and is particularly suitable for Roo-based

projects.

When using AJDT you may encounter a configuration option enabling you to "weave" the JDT. This

is on by default in STS, so you're unlikely to see the message if using STS. If you are prompted (or

locate the configuration settings yourself under the Window > Preferences > JDT Weaving menu),

you should enable weaving. This ensures the Java Editor in Eclipse (or STS) gives the best AspectJ-

based experience, such as code assist etc. You can also verify this setting is active by loading Eclipse

(or STS) and selecting Window > Preferences > JDT Weaving.

http://www.springsource.com/products/sts
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Usage and Conventions

1.3.0.RELEASE 42

If you're using m2eclipse, you won't need to use the perform eclipse command to setup your

environment. A simple import of the project using Eclipse's File > Import > General > Maven Projects

menu option is sufficient.

Irrespective of how you import your project into Eclipse (i.e. via the perform eclipse command or via

m2eclipse) you should be aware that the project will not be a Web Tools Project (WTP) until such

time as you install your first web controller. This is usually undertaken via the web mvc all or web

mvc controller command. If you have already imported your project into Eclipse, simply complete the

relevant web mvc command and then re-import. The project will then be a WTP and offer the ability

to deploy to an IDE-embedded web container. If you attempt to start a WTP server and receive an

error message, try right-clicking the project and selecting Maven > Update Project Configuration. This

often resolves the issue.

If you're using IntelliJ, we are pleased to report that IntelliJ now supports Roo. This follows the

completion of ticket IDEA-26959, where you can obtain more information about the AspectJ support

now available in IntelliJ.

If you're using any IDE other than STS, the recommended operating pattern is to load the standalone

Roo shell in one operating system window and leave it running while you interact with your IDE.

There is no formal link between the IDE and Roo shell. The only way they "talk" to each other is by

both monitoring the file system for changes made by the other. This happens so quickly that you're

unlikely to notice, and indeed internally to Roo we have an API that allows the polling-based approach

to be replaced with a formal notification API should it ever become necessary. As discussed in the

usability section, if you forget to load the Roo shell and start modifying your project anyway, all you

need to do is load the Roo shell again and it will detect any changes it needs to make automatically.

4.4. Build System Usage

Roo currently supports the use of Apache Maven. This is a common build system used in many

enteprise applications. We routinely poll our community and look at public surveys which consistently

show that nearly all enterprise development projects use either Maven or Ant, so we believe this is

a good default for Roo projects. As per the installation instructions, you must ensure you are using

Maven 2.0.9 or above. We do recommend you use Maven 2.2 for best results, though.

Roo will create a new pom.xml file whenever you use the project command. The POM will contain

the following Roo-specific considerations:

• A reference to the Roo annotations JAR. This JAR exists at development time only and has a scope

that prevents it from being included in resultant WAR files.

• A correct configuration of the Maven AspectJ plugin. This includes a reference to the Spring Aspects

library, which is important to Roo-based applications. Spring Aspects is included within Spring

Framework.

There are no other Roo changes to the POM. In particular, there is no requirement for the POM to

include Roo as part of any code generation step. Roo is never used in this "bulk generation style".

If you are interested in ensuring a build includes the latest Roo code generation output, you can cause

Maven or equivalent build system to execute roo quit. The presentation of the quit command line

option will cause the Roo shell to load, perform its startup-time scan (which identifies and completes

any required changes to generated files) and then exit.

http://youtrack.jetbrains.net/issue/IDEA-26959

Usage and Conventions

1.3.0.RELEASE 43

Those seeking Ant/Ivy instead of Maven support are encouraged to vote for issue ROO-91. The

internals of Roo do not rely on Maven at all. Nonetheless we have deferred it until we see sufficient

community interest to justify maintaining two build system environments.

4.5. File System Conventions

We have already covered some of Roo's file system conventions in the Usability Philosophy section. In

summary Roo will automatically monitor the file system for changes and code generate only those files

which match the *_Roo_*.aj wildcard. It will also code generate those JSPs associated with scaffolded

MVC controllers that have the annotation @RooWebScaffold.

Roo applications follow the standard Maven-based directory layout. We have also placed Spring

application context-related files (both .xml and .properties) in the recommended classpath sub-

directory for Spring applications, META-INF/spring.

4.6. Add-On Installation and Removal

Roo supports the installation and removal of third-party add-ons. Roo 1.1 added significant

enhancements to its add-on model, as more thoroughly discussed in Part III of this manual.

4.7. Recommended Practices

Following some simple recommendations will ensure you have the best possible experience with Roo:

• Don't edit any files that Roo code generates (see the Usability Philosophy for details).

• Before installing any new technology, check if Roo offers a setup command and use it if present

(this will ensure the seutp reflects our recommendations and the expectations of other add-ons).

• Ensure you leave the Roo shell running when creating, updating or deleting files in your project.

• Remember you'll still need to write Java code (and JSPs for custom controllers). Have the right

expectations before you start using Roo. It just helps you - it doesn't replace the requirement to

program.

• Check the Known Issues section before upgrading or if you experience any problems.

• Refer to the Roo Resources section for details of how to get assistance with Roo, such as the forum

and issue tracking database. We're happy to hear from you.

https://jira.springsource.org/browse/ROO-91

Usage and Conventions

1.3.0.RELEASE 44

4.8. Managing Roo Add-Ons

Modifying PGP Trusts For httppgp:// Scheme Operation

As detailed in the main text, Roo supports a special protocol scheme called httppgp://. This

performs a Pretty Good Privacy (PGP) detached signature verification before proceeding to

download the main resource. We use this as a key foundation of our add-on security model.

Many Roo commands download items from the Internet, and anytime a httppgp:// scheme is

encountered a PGP verification will take place.

One common case is if you are using the addon install command. An example of the error if the

PGP detached signature is untrusted is shown below:

roo> addon install --bundleSymbolicName de.saxsys.roo.equals.addon

Download URL 'http://[...]equals.addon-1.2.0.jar' failed

This resource was signed with PGP key ID '0xC3A61B10',

which is not currently trusted

Use 'pgp key view' to view this key, 'pgp trust' to trust it,

or 'pgp automatic trust' to trust any keys

Essentially you need to decide if you trust the PGP key ID or not. There is a pgp key view

command that will help you learn more about a given key ID if you would like to use it. You

can also view keys at public PGP key servers such as http://pgp.mit.edu/. You essentially have

two options to cause an untrusted httppgp download to be performed by Roo:

1. Use the pgp trust command to trust the PGP key ID shown in the error message. This will

permanently trust the key ID, and it will show up if you use the pgp list trusted keys command

(you can of course remove it via the pgp untrust command as well). All of the keys you trust

are stored in ~/.spring_roo_pgp.bpg, which is a binary encoded PGP key store which you

can also view and manage using normal PGP tools. An example of the command to trust a

key is shown below:

roo> pgp trust --keyId 0xC3A61B10

2. Alternately, you can decide to simply switch off key verification and automatically trust any

keys encountered. Such keys are stored in your ~/.spring_roo_pgp.bpg file. You should use

caution with this command, although it can be convenient if you'd simply like to install some

new add-ons and their dependencies without considering every key used to sign them. To use

automatic trust, simply type pgp automatic trust and press enter:

roo> pgp automatic trust

Automatic PGP key trusting enabled (this is potentially unsafe);

disable by typing 'pgp automatic trust' again

Once one of the above have been completed, you can repeat the command that attempted to

download a httppgp:// resource and it should succeed.

It is easy to extend the capabilities of Spring Roo with installable add-ons. This section will offer

a basic overview of Roo's add-on distribution model and explain how to install new add-ons. If

you're considering writing an add-on, please refer to the more advanced information in Part III of this

reference guide.

First of all, it's important to recognize that Roo ships with a large number of base add-ons. These built-

in add-ons may be all you ever require. Nevertheless, there is a growing community of add-ons written

http://pgp.mit.edu/

Usage and Conventions

1.3.0.RELEASE 45

by people outside the core Roo team. Because the core Roo team do not write these add-ons, we've

needed to implement an infrastructure so that external people can share their add-ons and make it easy

for you to install them.

Roo's add-on distribution system encourages individual add-on developers to host their add-on web

site (we don't believe in a central model where we must host add-ons on our servers). The main

requirement an add-on developer needs to fulfill is their add-ons must be in OSGi format and their

web site must include an OSGi Bundle Repository (OBR) index file. While Roo internally uses OSGi

and all modules are managed as OSGi bundles, this is transparent and you do not need any familiarity

with OSGi or bundles to work with the Roo add-on installation system. An OBR file is usually

named repository.xml and it is available over HTTP. If you're curious what these OBR files look

like, you can view the Spring Roo OBR repository at http://spring-roo-repository.springsource.org/

repository.xml. Within an OBR file each available Roo-related add-on is listed, along with the URL

where it is published. The URLs look similar to normal URLs, except they will usually specify a

httppgp:// protocol scheme (instead of the more common http://).

The httppgp:// protocol scheme is how we achieve a level of security with add-ons. Obviously with

every add-on developer able to host add-ons on any web site they nominate, it would be difficult

for you to know whether a particular add-on can be trusted. You probably only want to trust add-

ons from people you already trust or have cause to trust. To this end Roo offers automatic PGP-

related signature capabilities for any URL that uses the httppgp:// scheme. Most Roo add-ons use

this scheme. The internal step-by-step process that takes place is Roo essentially downloads the URL

+ ".asc" over HTTP. This file is a standard PGP detached signature file. PGP detached signature files

are increasingly common, with most Maven Central artifacts now also offering a signature file. If the

user's Roo installation trusts the key ID that signed the PGP detached signature, Roo will proceed to

download the URL. If the user's Roo installation does not trust the key ID, an error will be displayed and

the download will fail (and in turn the add-on installation process will fail if the bundle was specified

as a httppgp:// URL). Please see the side-bar for details on how you can trust different key IDs and

use the PGP-related commands in Roo.

Completing the picture of Roo's add-on distribution infrastructure is RooBot. This is a VMware-hosted

service that essentially indexes the important content in all public Roo OBR files. RooBot ensures that

add-ons it indexes are only available over httppgp://, reflecting the security model above. Add-on

developers can be added into RooBot's index in just a couple of minutes via an automated process.

Every time Roo loads, it automatically downloads the latest RooBot index file. This is how it knows

which public add-ons are available.

Enough with the theory, let's move on to the fun piece. In Spring Roo you simply use the shell to

locate new add-ons. To review the list of known add-ons you can use the addon list or addon search

command. This lists all add-ons that are in the RooBot-maintained index mentioned above:

roo> addon search

1234 found, sorted by rank; T = trusted developer; R = Roo 1.1 compatible

ID T R DESCRIPTION ---

01 Y Y 2.3.0.0001 This bundle wraps the standard Maven artifact:

 protobuf-java-2.3.0-lite.

02 Y - 0.3.0.RELEASE Addon for Spring Roo to provide generic DAO and query

 methods based on Hades.

03 Y Y 0.9.94.0001 This bundle wraps the standard Maven artifact:

 jline-0.9.94.S2-A (S2-A is a private patched version; see ROO-350 for...

04 - - 1.1.6 Addons that adds Content Negotiating View Resolver configuration

 to your application context: MVC multiple representations By default...

...(output truncated for reference guide inclusion)...

http://spring-roo-repository.springsource.org/repository.xml
http://spring-roo-repository.springsource.org/repository.xml

Usage and Conventions

1.3.0.RELEASE 46

[HINT] use 'addon info id --searchResultId ..' to see details about a search result

[HINT] use 'addon install id --searchResultId ..' to install a specific search result, or

[HINT] use 'addon install bundle --bundleSymbolicName TAB' to install a specific add-on version

There are various options you can pass to the search command to see more lines per result, perform

filtering and so on. Just use --TAB as usual to see these options.

If you can't see the add-on you're looking for, you can repeat the command with the optional --refresh

option. This will refresh your local RooBot index from our server.

To review details about a specific add-on, use the addon info id command as mentioned in the hint

at the bottom of the search results. There is also a related command called addon info bundle which

requires a "bundle symbolic name", which is usually the add-on's top-level package. However, it's

often more convenient to use the search result "ID" number (to the left hand side of each row) rather

than typing out a bundle symbolic name. Let's try this. To view details about the second add-on listed,

enter this command:

roo> addon info id --searchResultId 02

An example of the output of addon info id is shown below:

roo> addon info id --searchResultId 02

Name.........: Hades - Roo addon

BSN..........: org.synyx.hades.roo.addon

Version......: 0.3.0.RELEASE

Roo Version..: 1.1.0

Ranking......: 1.0

JAR Size.....: 20458 bytes

PGP Signature: 0xF2C57936 signed by Oliver Gierke (info@olivergierke.de)

OBR URL......: http://hades.synyx.org/static/roo/repo/repository.xml

JAR URL......: httppgp://hades.synyx.org/static/roo/repo/org/synyx/hades/org.syn

 yx.hades.roo.addon/0.3.0.RELEASE/org.synyx.hades.roo.addon-0.3.0.

 RELEASE.jar

Commands.....: 'hades install' [Installs Hades for the project]

Commands.....: 'hades repository' [Creates a Hades repository interface]

Description..: Addon for Spring Roo to provide generic DAO and query methods

 based on Hades.

Comment 1....: Rating [GOOD], Date [17/12/10], Comment [Nice add-on for those

 who want to use a separate repository layer, can be improved in

 functionality]

In the above output "BSN" means bundle symbolic name, which is the alternate way of referring to a

given add-on. The output also shows you the Roo shell commands that are available via the add-on.

These commands are automatically seen by the Roo shell, so if you typed in this case "hades install"

without first having installed the add-on, Roo would have performed a search and shown you this add-

on offered the command. This is a great feature and means you can often just type commands you

think you might need and find out which add-ons offer them without performing an explicit search. A

similar feature exists for JDBC resolution if you try to reverse engineer a database for which there is

no installed JDBC driver (Roo will automatically suggest the add-on you need and instruct you which

command to use to install it).

If you decide to install a specific add-on, simply use the addon install id command:

roo> addon install id --searchResultId 02

Successfully installed add-on: org.synyx.hades.roo.addon

[Hint] Please consider rating this add-on with the following command:

[Hint] addon feedback bundle --bundleSymbolicName org.synyx.hades.roo.addon --rating ... --comment "..."

Usage and Conventions

1.3.0.RELEASE 47

If the add-on installation is aborted with a warning that the add-on author is currently not trusted, please

review the sidebar about modifying PGP trusts. To simplify identifying add-ons from developers you

already trust, the addon search results include a "T" column which means "trusted developer". If you

see a "Y" in that column, you've already trusted that developer's PGP key and thus installation will

work without needing to add their key. If you see a "-" in that column, you'll need to first tell Roo you

trust their key (as explained in the PGP sidebar).

As per the [HINT] messages that appear immediately after installing an add-on, we appreciate your

feedback about the add-ons you use. You can use the addon feedback bundle command for this purpose,

as shown in the console text above. If you provide a rating or comment, it will show up for other people

to see when they use the addon info command.

It is generally recommended to restart Roo to ensure the add-on is properly initialized. This

theoretically isn't necessary in most cases, but it doesn't hurt.

You can also upgrade your existing add-ons by using the addon upgrade commands. To do this you

should first run the addon upgrade settings command which allows you to define the desired stability

level which is taken into account when performing the addon upgrade all command:

roo> addon upgrade settings --addonStabilityLevel ANY|MILESTONE|RELEASE|RELEASE_CANDIDATE

If you don't define a stability level through the addon upgrade settings command it defaults to

RELEASE - meaning only release versions will be upgraded (if upgrades for this level are available).

Other stability levels to choose from are RELEASE_CANDIDATE, MILESTONE, and ANY (i.e.

snapshots).

To list all available upgrades for currently installed add-ons you can use the addon upgrade available

command. This will provide an overview of add-ons which can be upgraded and their respective

stability levels. Furthermore, you can also upgrade individual add-ons by using the addon upgrade

bundle command which allows you to specify the add-on bundle symbolic name (and the add-on

version in case multiple versions are available). Finally, you can use the addon upgrade id command

to upgrade a specific add-on which has appeared in a search result to the latest version available.

Of course, you can remove add-ons as well. To uninstall any given add-on, just use the addon

remove command. On this occasion we'll use the bundle symbolic name (which is available via TAB

completion as is usual with Roo):

roo> addon remove --bundleSymbolicName de.saxsys.roo.equals.addon

Successfully removed add-on: de.saxsys.roo.equals.addon

Note that all of the "addon" commands only work with add-ons listed in the central RooBot index file.

This is fine, as most public Roo add-ons are listed there. However, sometimes an add-on cannot be

published into the RooBot index file. The most common reason is that it's an add-on internal to your

organization, or perhaps it's simply not ready for public consumption.

Even if an add-on is not listed in RooBot, you can still install it. The "osgi obr url add" command can

be used to add the add-on's OBR URL to your Roo installation. This command is typically followed

by an "osgi obr start" command to download and start the add-on. Importantly, the additional security

verifications performed by RooBot are skipped given RooBot is not used with these commands (or

other related commands such as osgi start). That means bundles you start using the "osgi obr start"

command may not use httppgp:// for PGP signature verification. As such you should exercise caution

when using any installation-related commands that do not start with "addon", as such commands do

Usage and Conventions

1.3.0.RELEASE 48

not use resources subject to the RooBot security verifications. Noneless there remain legitimate use

cases for such distribution styles, so it's good to know Roo supports them as well as the more common,

user-friendly and more secure "addon" commands.

1.3.0.RELEASE 49

Chapter 5. Existing Building Blocks

Sometimes you have an existing project or database. This chapter covers how to make Spring Roo

work with it.

5.1. Existing Projects

If you have an existing project that you'd like to use with Roo, we recommend that you follow these

steps:

1. Decide whether your project files are easier to migrate to a new Roo project or it's easier to amend

your current project into a Roo project. Both approaches are valid. The following steps reflect

migrating your current project into a Roo project.

2. Convert the project to use Maven. Ensure you use the correct Maven directory layouts.

3. Move your Spring configuration and other files to the same directories as used by Roo. Start a new

Roo-based project if you're unsure where these files are typically stored.

4. Add the Roo annotations JAR and Maven AspectJ plugin to your POM. Use the same syntax as a

new Roo-based project would use.

5. Load Roo on your project and verify it does not report any errors. Resolve any errors before

continuing.

6. Add a test @RooToString annotation to one of your existing classes. Verify the ITD is created and

can be used within your IDE (if you're using an IDE). Check the new toString() method is used.

7. Start incrementally using the simpler Roo add-ons like toString support and JavaBeans. When you're

confident, move onto other Roo commands and add-ons.

If you encounter any difficulty, we recommend you consult the Roo Resources section of the reference

guide for help.

5.2. Existing Databases

Many organisations have existing databases that they'd like to use with Roo.

A significant new feature added to Spring Roo 1.1 was support for incremental database reverse

engineering. This feature is robust and comprehensive, and allows you to reverse engineer an existing

database in a single command. The single command doesn't even ask you any questions as it operates,

and it gracefully handles changes to your schema over time.

We recommend that you consult the incremental database reverse engineering chapter if you'd like to

work with an existing relational database.

1.3.0.RELEASE 50

Chapter 6. Removing Roo

While we'll be sad to see you go, we're happy that Roo was able to help you in some way with your

Spring-based projects. We also know that most people reading this chapter aren't actually likely to

remove Roo at all, and are simply wondering how they'd go about it in the unlikely event they ever

actually wanted to. If you have a source control system, it's actually a good idea to complete these

instructions (without checking in the result!) just to satisfy yourself that it's very easy and reliable to

remove Roo.

6.1. How Roo Avoids Lock-In

At the time we created the mission statement for Roo, a key dimension was "without compromising

engineering integrity or flexibility". To us that meant not imposing an unacceptable burden on projects

like forcing them to use the Roo API or runtime or locking them in. While it complicated our design to

achieve this, we're very proud of the fact Roo's approach has no downside at runtime or lock-in or future

flexibility. You really can have your cake and eat it too, to reflect on the common English expression.

Roo avoids locking you in by adopting an active code generation approach, but unlike other code

generators, we place Roo generated code in separate compilation units that use AspectJ inter-type

declarations. This is vastly better than traditional active code generation alternatives like forcing you

to extend a particular class, having the code generator extend one of your classes, or forcing you to

program a model in an unnatural diagrammatic abstraction. With Roo you just get on with writing Java

code and let Roo take care of writing and maintaining the code you don't want to bother writing.

The other aspect of how Roo avoids lock-in is using annotations with source-level retention. What this

means is the annotations are not preserved in your .class files by the time they are compiled. This

in turn means you do not need the Roo annotation library in your runtime classpath. If you look at

your WEB-INF/lib directory (if you're building a web project), you will find absolutely no Roo-related

JARs. They simply don't exist. In fact if you look at your development-time classpath, only the Roo

annotation JAR library will be present - and that JAR doesn't contain a single executable line of code.

The entire behaviour of Roo is accomplished at development time when you load the Roo shell. If you

also think about the absence of executable code anywhere in your project classpath, there is no scope

for possible Roo bugs to affect your project, and there is no risk of upgrading to a later version of Roo.

Because we recommend people check their Roo-generated *_Roo_*.aj files into source control, you

don't even need to load Roo to perform a build of your project. The source-level annotation library

referred to in the previous paragraph is in a public Maven repository and will automatically be

downloaded to your computer if it's not already present. This means Roo is not part of your build

process and your normal source control system branching and tagging processes will work.

This also means that a project can "stop using Roo" by simply never loading the Roo shell again.

Because the *_Roo_*.aj files are written to disk by the Roo shell when it last ran, even if it's never

loaded again those files will still be present. The removal procedures in this chapter therefore focus on

a more complete removal, in that you no longer even want the *_Roo_*.aj files any more. That said,

there's nothing wrong with just never loading Roo again and keeping the *_Roo_*.aj files. The only

possible problem of adopting the "never load Roo again" approach is that someone might load Roo

again and those files will be updated to reflect the latest optimisations that Roo can provide for you.

http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/RetentionPolicy.html#SOURCE

Removing Roo

1.3.0.RELEASE 51

6.2. Pros and Cons of Removing Roo

By removing Roo, you eliminate the Roo-generated source files from your project. These are inter-

type declarations stored in *_Roo_*.aj files. You also remove the Roo annotation library from your

project. This might be attractive if you've made a decision to no longer use Roo for some reason, or

you'd like to ship the finished project to your client and they'd prefer a simple Java project where every

piece of code is in standard .java files. Another reason you might like to remove Roo is to simply

satisfy yourself it's easy to do so and therefore eliminate a barrier to adopting Roo for real projects

in the first place.

Even though it's easy to do so, there are downsides of removing Roo from your project:

• Cluttered Java classes: If the *_Roo_*.aj files are removed, their contents need to go somewhere.

That somewhere is into your .java source files. This means your .java source files will be

considerably longer and contain code that no developer actually wrote. When developers open your

.java source files, they'll need to figure out what was written by hand and is unique to the class,

what was automatically generated and then modified, and what was automatically generated and

never modified. If using Roo this problem is eliminated, as anything automatically generated is in

a separate, easily-identified source file.

• No round-trip support: Let's imagine for a moment that you've written (either by hand or via your

IDE's code generation feature) a toString() method and getter/setter pairs for all your fields. You

then decide to rename a field. Suddenly the getter, setter and toString() methods are all in error. If

you use Roo, it automatically detects your change and appropriately updates the generated code. If

you remove Roo, you'll lose this valuable round-trip support and be doing a lot more tedious work

by hand.

• No optimisations to generated files: With each version of Roo we make improvements to the

automatically-created *_Roo_*.aj files. These improvements are automatically made to your

Roo.aj files when you load a new version of Roo. These improvements occasionally fix bugs,

but more often provide new features and implement existing features more efficiently (remember

eliminating engineering trade-offs and therefore maximising efficiency is a major objective in our

mission statement). If you remove the *_Roo_*.aj files, you'll receive the code as of that date and

you'll miss out on further improvements we make.

• Loss of Roo commands: There are dozens of Roo commands available to assist you adapt to evolving

project requirements. Next month you might be asked to add JMS services to your project. With Roo

you just "jms setup". The month after you're asked about SMTP, so you just "email sender setup".

If you've eliminated Roo, you'll need to resort to much more time-consuming manual configuration

(with its associated trial and error).

• Deprecated library versions: Because Roo automatically updates your code and has a good

knowledge of your project, it's easy to always use the latest released versions of important runtime

technologies like Spring and JPA. If you stop using Roo, you'll need to manually do all of the work

involved in upgrading your project to newer versions. This will mean you're likely to end up on

older runtime library versions that have bugs, fewer features and are not maintained or supported.

With Roo you significantly mitigate this risk.

• Undesirable architectural outcomes: With Roo you achieve team-wide consistency and a solution

with a high level of engineering integrity. If developers are forced to write repetitious code

Removing Roo

1.3.0.RELEASE 52

themselves and no longer enjoy optimised Roo commands, you'll likely find that over time you lose

some of the consistency and engineering advantages of having used Roo in the first place.

• Higher cost: With the above in mind, you'll probably find development takes longer, maintenance

takes longer and your runtime solution will be less efficient than if you'd stayed with Roo.

As such we believe using Roo and continuing to use Roo makes a lot of sense. But if you're willing

to accept the trade-offs of removing Roo (which basically means you switch to writing your project

the unproductive "old fashioned way"), you can remove Roo very easily. Don't forget when in doubt

you can always defer the decision. It's not as if Roo won't let you remove it just as easily in six months

or two years from now!

6.3. Step-by-Step Removal Instructions

The following instructions explain how to remove Spring Roo from one of your projects that has to

date been using Roo. Naturally if you'd simply like to remove Roo from your computer (as opposed

to from an existing project), the process is as simple as removing the Roo installation directory and

symbolic link. This section instead focuses on the removal from your projects.

As mentioned above, a simple way of stopping to use Roo is to simply never load it again. The

Roo.aj files will still be on disk and your project will continue to work regardless of whether the

Roo shell is never launched again. You can even uninstall the Roo system from your computer and

your project will still work. The advantage of this approach is you haven't lost most of the benefits of

using Roo and it's very easy to simply reload the Roo shell again in the future. This section covers the

more complete removal option should you not even want the *_Roo_*.aj files any more.

Please be aware that enhancement request ROO-222 exists to replace step 1 with a Roo command, and

ROO-330 similarly focuses on steps 2 and 3. Please vote for these enhancement requests if you'd like

them actioned, although the instructions below still provide a fast and usable removal procedure.

6.3.1. Step 1: Push-In Refactor

Before proceeding, ensure you have quit any running Roo shell. We also recommend you run any tests

and load your web application interface (if there is one) to verify your project works correctly before

starting this procedure. We also recommend that you create a branch or tag in your source control

repository that represents the present "Roo-inclusive" version, as it will help you should you ever wish

to reenable Roo after a removal.

To remove Roo from a project, you need to import the project into Eclipse or SpringSource Tool Suite.

Once the project has been imported into Eclipse, right-click the project name in Package Explorer

and select Refactor > Push-In Refactor. If this option is missing, ensure that you have a recent

version of AJDT installed. After selecting the push-in refactor menu option, a list of all Roo inter-type

declarations will be displayed. Simply click OK. AJDT will have now moved all of the Roo inter-type

declarations into your standard .java files. The old *_Roo_*.aj files will have automatically been

deleted.

6.3.2. Step 2: Annotation Source Code Removal

While your project is now free of inter-type declarations, your .java files will still have @Roo

annotations within them. In addition, there will be import directives at the top of your .java files to

import those @Roo annotations. You can easily remove these unwanted members by clicking Search

https://jira.springsource.org/browse/ROO-222
https://jira.springsource.org/browse/ROO-330

Removing Roo

1.3.0.RELEASE 53

> Search > File Search, containing text "\n.*[@\.]Roo[^t_]+?.*$" (without the quotes), file name

pattern "*.java" (without the quotes), ticking the "Regular expression" and "Case sensitive" check-

boxes and clicking "Replace". When the next window appears and asks you for a replacement pattern,

leave it blank and continue. All of the Roo statements will have now been removed. We have noticed

for an unknown reason that sometimes this operation needs to be repeated twice in Eclipse.

6.3.3. Step 3: Annotation JAR Removal

By now your .java files do not contain any Roo references at all. You therefore don't

require the org.springframework.roo.annotations-*.jar library in your development-time

classpath. Simply open your pom.xml and locate the <dependency> element which contains

<artifactId>org.springframework.roo.annotations</artifactId>. Delete (or comment out) the

entire <dependency> element. If you're running m2Eclipse, there is no need to do anything further.

If you used the command-line mvn command to create your Eclipse .classpath file, you'll need to

execute mvn eclipse:clean eclipse:eclipse to rebuild the .classpath file.

Roo has now been entirely removed from your project and you should re-run your tests and user

interface for verification of expected operation. It's probably a good idea to perform another branch or

tag in your source control repository so the change set is documented.

6.4. Reenabling Roo After A Removal

If you decide to change your mind and start using Roo again, the good news is that it's

relatively easy. This is because your project already uses the correct directory layout and has

AspectJ etc properly configured. To re-enable Roo, simply open your pom.xml and re-add the

org.springframework.roo.annotations <dependency> element. You can obtain the correct syntax

by simply making a new directory, changing into that directory, executing roo script vote.roo, and

inspecting the resulting pom.xml.

Once you've added the dependency, you're free to load Roo from within your project's directory and

start using the Roo commands again. You're also free to add @Roo annotations to any .java file that

would benefit from them, but remember that Roo is "hands off by default". What that means is if you

used the push-in refactor command to move members (e.g. fields, methods, annotations etc) into the

.java file, Roo has no way of knowing that they originated from a push-in refactor as opposed to

you having written them by hand. Roo therefore won't delete any members from your .java file or

override them in an inter-type declaration.

Our advice is therefore (a) don't remove Roo in the first place or (b) if you have removed Roo and go

back to using Roo again, delete the members from your .java files that Roo is able to automatically

manage for you. By deleting the members that Roo can manage for you from the .java files, you'll

gain the maximum benefit of your decision to resume using Roo. If you're unsure which members Roo

can automatically manage, simply comment them out and see if Roo provides them automatically for

you. Naturally you'll need the relevant @Roo annotation(s) in your .java files before Roo will create

any members automatically for you.

A final tip if you'd like to return to having ITDs again is that AJDT 2.0 and above offers a Refactor

> Push Out command. This may assist you in moving back to ITDs. The Edit > Undo command also

generally works if you decide to revert immediately after a Refactor > Push In operation.

1.3.0.RELEASE 54

Part II. Base Add-Ons
This part of the reference guide provides a detailed reference to the major Roo base add-ons and how they work.

This part goes into more detail than the tutorial chapter and offers a "bigger picture" discussion than the command

reference appendix.

1.3.0.RELEASE 55

Chapter 7. Base Add-On Overview

When you download the Spring Roo distribution ZIP, there are actually two major logical components

in use. The first of these is the "Roo core", which provides an environment in which to host add-ons

and provide services to them. The other component is what we call "base add-ons". A base add-on

is different from a third party add-on only in that it is included in the Roo distribution by default and

does not require you to separately install it. In addition, you cannot remove a base add-on using normal

Roo commands.

Base add-ons always adopt the package name prefix org.springframework.roo.addon. We also

have a part of Roo known as "Roo core". This relates to the core modules, and these always have

package names that start with org.springframework.roo (but excluding those with "addon" as the

next package name segment, as in that case they'd be a "base add-on"). Roo core provides very few

commands, and whatever commands it provides are generally internal infrastructure-related features

(like "poll status" or "metadata for id") or sometimes aggregate the features provided by several

individual base add-ons (e.g. "entity jpa --testAutomatically").

Add-ons that do not ship with Spring Roo but are nevertheless about to be used with it are known as

"installable add-ons" (these were previously called "third-party add-ons", but we decided to change

the name in Roo 1.1 in view that SpringSource itself was publishing add-ons that were not shipping

as part of Roo and the use of the term "third-party" was confusing). Such add-ons do not appear under

the org.springframework.roo package name space. A large number of individuals and organizations

publish installable add-ons, and indeed even within the SpringSource division of VMware we have

teams publishing installable add-ons. The decision as to whether an add-on becomes a base add-on or

an installable add-on depends on a large number of factors, but in general we prefer installable add-

ons over base add-ons. This offers flexibility around release cycles, licenses, deployment footprint,

code maintenance and so on.

Of course as a user of Roo you do not need to be aware of whether a particular component is part of Roo

core, a base add-on or an installable add-on. It's just useful for us to formally define these commonly-

used terms and explain the impact on whether you need to install or uninstall a component or not.

The individual base add-ons provided by Roo provide capabilities in the following key functional areas:

• Project management (like project creation, dependency management, "perform" commands)

• General type management (like creation of types, toString method, JavaBean methods)

• Persistence (like JPA setup, entities)

• Field management (like JSR 303 and field creation with JPA compliance)

• Database introspection and reverse engineering

• Dynamic finders (creation of finders without needing to write the JPA-QL for them)

• JUnit testing (with integration and mock testing)

• Spring MVC (including URL rewriting, JSP services, controller management)

• Spring Web Flow

• Spring Security

Base Add-On Overview

1.3.0.RELEASE 56

• Selenium testing

• Java Message Service (JMS)

• Simple Mail Transfer Service (SMTP)

• Log4J configuration

We have added dedicated chapters for many of these functional areas in this, Part II of our

documentation. You can also find more introductory material concerning these areas in Part I, along

with our samples, the command reference and project resources.

1.3.0.RELEASE 57

Chapter 8. Persistence Add-On
The persistence add-on provides a convenient way to create Java Persistence API (JPA v2) compliant

entities. There are different commands available to configure JPA, create new JPA-compliant entities,

and add fields to these entities. In the following a summary of the features offered by the Spring Roo

persistence add-on:

8.1. JPA setup command

The jpa setup command provides the following options and attributes:

Database Options:

• HSQL (in memory)

• HSQL (persistent)

• H2 (in memory)

• MySQL

• Postgres

• MS SQL Server

• Sybase

• Oracle *

• DB2 *

• DB2/400

• Google App Engine (GAE)

• Apache Derby (Java DB)

• Firebird

* The JDBC driver dependencies for these databases are not available in public Maven repositories. As

such, Roo configures a default dependency in your project pom.xml. You need to adjust it according

to your specific version of your database driver available in your private Maven repository.

Some useful hints to get started with Oracle Express (Oracle XE): After installing Oracle XE you need

to find the JDBC driver under ${oracle-xe}/app/oracle/product/10.2.0/server/jdbc/lib and

run the command:

mvn install:install-file -Dfile=ojdbc14_g.jar -DgroupId=com.oracle -DartifactId=ojdbc14 -Dversion=10.2.0.2 -Dpackaging=jar -DgeneratePom=true

Also, if you dont want Jetty (or Tomcat) to be conflicting with oracle-xe web-server, you should use

the following command: mvn jetty:run -Djetty.port=8090.

ORM Provider Options:

• EclipseLink

• Hibernate

http://java.sun.com/javaee/6/docs/tutorial/doc/bnbpz.html
http://hsqldb.org/
http://hsqldb.org/
http://www.h2database.com/html/main.html
http://www.mysql.com/
http://www.postgresql.org/
http://www.microsoft.com/sqlserver
http://www.sybase.com/
http://www.oracle.com/index.html
http://www.ibm.com/db2
http://www.ibm.com/db2
http://code.google.com/appengine/
http://db.apache.org/derby/
http://www.firebirdsql.org/
http://www.eclipse.org/eclipselink/
http://www.hibernate.org/

Persistence Add-On

1.3.0.RELEASE 58

• OpenJPA

• DataNucleus 3.0

In addition, the jpa setup command accepts optional databaseName, userName and password attributes

for your convenience. However, it's not necessary to use this command. You can easily edit these

details in the database.properties file at any time. Finally, you can also specify a pre-configured

JNDI datasource via the jndiDataSource attribute.

The jpa setup command can be re-run at any time. This means you can change your ORM provider or

database when you plan to move your application between your development setup (e.g. Hibernate with

HSQLDB) to your production setup (e.g. EclipseLink with DB2). Of course this is a convenience only.

You'll naturally experience fewer deployment issues if you use the same platform for both development

and production.

Running the jpa setup command in the Roo shell takes care of configuring several aspects in your

project:

1. JPA dependencies are registered in the project pom.xml Maven configuration. It includes the JPA

API, ORM provider (and its dependencies), DB driver, Spring ORM, Spring JDBC, Commons

DBCP, and Commons Pool

2. Persistence XML configuration with a persistence-unit preconfigured based on your choice of ORM

provider and Database. Here is an example for the EclipseLink ORM provider and HSQL database:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="persistenceUnit" transaction-type="RESOURCE_LOCAL">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <properties>

 <property name="eclipselink.target-database"

 value="org.eclipse.persistence.platform.database.HSQLPlatform"/>

 <!--value='drop-and-create-tables' to build a new database on each run;

 value='create-tables' creates new tables if needed;

 value='none' makes no changes to the database-->

 <property name="eclipselink.ddl-generation" value="drop-and-create-tables"/>

 <property name="eclipselink.ddl-generation.output-mode" value="database"/>

 <property name="eclipselink.weaving" value="static"/>

 </properties>

 </persistence-unit>

</persistence>

By default the persistence unit is configured to build a new database on each application restart.

This helps to avoid data inconsistencies during application development when the domain model

is not yet finalized (new fields added to an entity will yield new table columns). If you feel that

your domain model is stable you can manually switch to a mode which allows data persistence

across application restarts in the persistence.xml file. This is documented in the comment above the

relevant property. Each ORM provider uses different property names and values to achieve this.

3. A database properties file (src/main/resources/META-INF/spring/database.properties)

which contains user name, password, JDBC driver name and connection URL details:

http://openjpa.apache.org/
http://www.datanucleus.org/

Persistence Add-On

1.3.0.RELEASE 59

database.url=jdbc\:hsqldb\:mem\:foo

database.username=sa

database.password=

database.driverClassName=org.hsqldb.jdbcDriver

This file can be edited manually, or you can use the properties set command, or by using the

databaseName, userName and password attributes of the jpa setup command. You can edit the

properties file or use any of these commands at any time.

4. A DataSource definition and a transaction manager are added to the Spring application context:

[...]

<bean class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" id="dataSource">

 <property name="driverClassName" value="${database.driverClassName}"/>

 <property name="url" value="${database.url}"/>

 <property name="username" value="${database.username}"/>

 <property name="password" value="${database.password}"/>

</bean>

<bean class="org.springframework.orm.jpa.JpaTransactionManager" id="transactionManager">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

<bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

</bean>

8.2. Entity JPA command

Using the entity jpa command you can create simple Java beans which are annotated with JPA

annotations. There are several optional attributes which can be used as part of this command but in its

simplest form it will generate the following artifacts:

roo> entity jpa --class ~.Person

Created SRC_MAIN_JAVA/com/foo

Created SRC_MAIN_JAVA/com/foo/Person.java

Created SRC_MAIN_JAVA/com/foo/Person_Roo_JavaBean.aj

Created SRC_MAIN_JAVA/com/foo/Person_Roo_Jpa_Entity.aj

Created SRC_MAIN_JAVA/com/foo/Person_Roo_Jpa_ActiveRecord.aj

Created SRC_MAIN_JAVA/com/foo/Person_Roo_ToString.aj

Created SRC_MAIN_JAVA/com/foo/Person_Roo_Configurable.aj

~.Person roo>

As you can see from the Roo shell messages there are 6 files generated (also, note that the context has

changed to the Person type in the Roo shell):

1. Person.java:

@RooJavaBean

@RooToString

@RooJpaActiveRecord

public class Person {

}

You will notice that by default, the Person type does not contain any fields (these will be added

with the field commands or manually in the type) or methods.

Persistence Add-On

1.3.0.RELEASE 60

2. Person_Roo_JavaBean.aj (this will only be generated when fields are added to the Person type)

The first annotation added by the entity jpa command is the @RooJavaBean annotation. This

annotation will automatically add public accessors and mutators via an ITD for each field added to

the Person type. This annotation (like all Roo annotations) has source retention (so it will not be

present in the generated byte code).

3. Person_Roo_ToString.aj

The second annotation added to the Person type is the @RooToString annotation. This annotation

will generate a toString method for the Person type via an ITD. The toString() method will

contain a concatenated representation of all field names and their values using the commons-

lang RefectionToStringBuilder by default. If you want to provide your own toString() method

alongside the Roo generated toString() method you can declare the toStringMethod attribute in the

@RooToString annotation. This attribute allows you to change the default method name of the

Roo-managed toString() (default name) method, thereby allowing your custom toString() method

alongside the Roo-managed method.

4. Person_Roo_Configurable.aj

This ITD is automatically created and does not require the @RooConfigurable annotation to

be introduced into the Person.java type. It takes care of marking the Person type with Spring's

@Configurable annotation. This annotation allows you to inject any types from the Spring bean

factory into the Person type. The injection of the JPA entity manager (which is defined as a bean in

the application context) is possible due to the presence of the @Configurable annotation.

5. Person_Roo_Jpa_Entity.aj

The forth annotation is the @RooJpaActiveRecord annotation. This annotation triggers the creation

of two ITDs: the Person_Roo_Jpa_Entity.aj ITD and the Person_Roo_Jpa_ActiveRecord.aj ITD.

Note that If you do not want ActiveRecord-style methods in your domain object you can just use

the @RooJpaEntity annotation.

The JPA @Entity annotation is added to the Person_Roo_Jpa_Entity.aj ITD. This annotation marks

the Person as persistable. By default, the JPA implementation of your choice will create a table

definition in your database for this type. Once fields are added to the Person type, they will be added

as columns to the Person table.

privileged aspect Person_Roo_Jpa_Entity {

 declare @type: Person: @Entity;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 private Long Person.id;

 @Version

 @Column(name = "version")

 private Integer Person.version;

 public Long Person.getId() {

 return this.id;

 }

 public void Person.setId(Long id) {

 this.id = id;

Persistence Add-On

1.3.0.RELEASE 61

 }

 public Integer Person.getVersion() {

 return this.version;

 }

 public void Person.setVersion(Integer version) {

 this.version = version;

 }

}

As can be seen, the Person_Roo_Jpa_Entity.aj ITD introduces two fields by default. An id field

(which is auto-incremented) and a version field (used for JPA-managed optimistic locking).

6. Person_Roo_Jpa_ActiveRecord.aj

As mentioned previously, the @RooJpaActiveRecord annotation also triggers the creation of

the Person_Roo_Jpa_ActiveRecord.aj ITD. This contains a number of persistence related CRUD

methods into your Person type via the ITD:

privileged aspect Person_Roo_Jpa_ActiveRecord {

 @PersistenceContext

 transient EntityManager Person.entityManager;

 @Transactional

 public void Person.persist() {

 if (this.entityManager == null) this.entityManager = entityManager();

 this.entityManager.persist(this);

 }

 @Transactional

 public void Person.remove() {

 if (this.entityManager == null) this.entityManager = entityManager();

 if (this.entityManager.contains(this)) {

 this.entityManager.remove(this);

 } else {

 Person attached = this.entityManager.find(this.getClass(), this.id);

 this.entityManager.remove(attached);

 }

 }

 @Transactional

 public void Person.flush() {

 if (this.entityManager == null) this.entityManager = entityManager();

 this.entityManager.flush();

 }

 @Transactional

 public Person Person.merge() {

 if (this.entityManager == null) this.entityManager = entityManager();

 Person merged = this.entityManager.merge(this);

 this.entityManager.flush();

 return merged;

 }

 public static final EntityManager Person.entityManager() {

 EntityManager em = new Person().entityManager;

 if (em == null) throw new IllegalStateException("Entity manager has not been \

 injected (is the Spring Aspects JAR configured as an AJC/AJDT \

 aspects library?)");

 return em;

 }

Persistence Add-On

1.3.0.RELEASE 62

 public static long Person.countPeople() {

 return entityManager().createQuery("select count(o) from Person o", Long.class)

 .getSingleResult();

 }

 @SuppressWarnings("unchecked")

 public static List<Person> Person.findAllPeople() {

 return entityManager().createQuery("select o from Person o", Person.class).getResultList();

 }

 public static Person Person.findPerson(Long id) {

 if (id == null) return null;

 return entityManager().find(Person.class, id);

 }

 @SuppressWarnings("unchecked")

 public static List<Person> Person.findPersonEntries(int firstResult, int maxResults) {

 return entityManager().createQuery("select o from Person o", Person.class)

 .setFirstResult(firstResult).setMaxResults(maxResults).getResultList();

 }

}

The Person_Roo_Jpa_ActiveRecord.aj ITD introduces a number of methods such as persist(),

remove(), merge(), flush() which allow the execution of ActiveRecord-style persistence operations

on each Roo-managed JPA entity. Furthermore, a number of persistence-related convenience

methods are provided. These methods are countPeople(), findAllPeople(), findPerson(..), and

findPersonEntries(..).

All persistence methods are configured with Spring's Transaction support

(Propagation.REQUIRED, Isolation.DEFAULT).

Similar to the @RooToString annotation you can change the default method name for

all persistence-related methods generated through the @RooJpaActiveRecord annotation. For

example:

@RooJpaActiveRecord(persistMethod = "save")

The entity jpa command offers a number of optional (but very useful) attributes worth mentioning. For

example the --testAutomatically attribute can be used to have Roo to generate and maintain integration

tests for the Person type (and the persistence methods generated as part of it). Furthermore, the --
abstract and --extends attributes allow you to mark classes as abstract or inheritance patterns. Of

course this can also be done directly in the Java sources of the Person type but sometimes it is useful to

do this through a Roo command which can be scripted and replayed if desired. Other attributes allow

you to define the identifier field name as well as the identifier field type which, in turn, allows the use

of complex identifier types.

8.3. Field commands

As mentioned earlier in this chapter the field commands allow you to add pre-configured field

definitions to your target entity type (Person.java in our example). In addition to simply adding the field

names and types as defined via the command the appropriate JPA annotations are added to the field

definitions. For example adding a birth day field to the Person.java type with the following command ...

~.Person roo> field date --fieldName birthDay --type java.util.Date

Managed SRC_MAIN_JAVA/com/foo/Person.java

Created SRC_MAIN_JAVA/com/foo/Person_Roo_JavaBean.aj

Managed SRC_MAIN_JAVA/com/foo/Person_Roo_ToString.aj

http://en.wikipedia.org/wiki/Active_record_pattern
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/transaction.html

Persistence Add-On

1.3.0.RELEASE 63

~.Person roo>

... yields the following field definition in Person.java:

@Temporal(TemporalType.TIMESTAMP)

@DateTimeFormat(style = "M-")

private Date birthDay;

You'll notice that the @Temporal annotation is part of the JPA specification and defines how date

values are persisted to and retrieved from the database in a transparent fashion. The @DateTimeFormat

annotation is part of the Spring framework and takes care of printing and parsing Dates to and from

String values when necessary (especially Web frontends frequently take advantage of this formatting

capability).

Also note that Roo created a Person_Roo_JavaBean.aj ITD to generate accessors and mutators for the

birthDay field and it also updated the toString() method to take the birthDay field into account.

Aside from the Date (and Calendar) type, the field command offers String, Boolean, Enum, Number,

Reference and Set types. The Reference and Set types are of special interest here since they allow you

to define relationships between your entities:

1. The field reference command will create a JPA many-to-one (default) or one-to-one relationship:

~.Person roo> field reference --fieldName car --type com.foo.Car

The field definition added to the Person type contains the appropriate JPA annotations:

@ManyToOne

@JoinColumn

private Car car;

The optional --cardinality command attribute allows you to define a one-to-one relationship (via

JPAs @OneToOne annotation) between Person and Car if you wish:

@OneToOne

@JoinColumn

private Car car;

You can add the mappedBy attribute to the @OneToOne annotation to define the FK name handled

by the inverse side (Car) of this relationship.

Consider the following constraint: when you delete a Person, any Car they have should also be

deleted, but not vice versa (i.e. you should be able to delete a Car without deleting its owner). In

the database, the foreign key should be in the "car" table.

@Entity

@RooJavaBean

@RooJpaActiveRecord

public class Person {

 // Inverse side ("car" table has the FK column)

 @OneToOne(cascade = CascadeType.ALL, mappedBy = "owner")

 private Car car;

}

@Entity

Persistence Add-On

1.3.0.RELEASE 64

@RooJavaBean

@RooJpaActiveRecord

public class Car {

 // Owning side (this table has the FK column)

 @OneToOne

 @JoinColumn

 private Person owner;

}

If you delete a Person from the Person list, both the Person and the Car are deleted. So the cascading

works. But if you delete a Car, the transaction will roll back and you will see an exception due

it being referenced by a person. To overcome this situation you can add the following method to

your Car.java:

@PreRemove

private void preRemove() {

 this.getOwner().setCar(null);

}

This hooks into the JPA lifecycle callback function and will set the reference between Person and

Car to null before attempting to remove the record.

2. The field set command will allow you to create a many-to-many (default) or a one-to-many

relationship:

field set --fieldName cars --type com.foo.Car

The field definition added to the Person type contains the appropriate JPA annotation:

@ManyToMany(cascade = CascadeType.ALL)

private Set<Car> cars = new HashSet<Car>();

To change the mapping type to one-to-many simply use the --cardinality attribute. To achieve a

true m:n relationship you will need to issue the field set commands for both sides of the relationship.

Like the entity jpa command, the field command offeres a number of optional (but very useful)

attributes worth mentioning. For example, you can change the field / column name translations with

the --column attribute. Furthermore there are a number of attributes which translate directly to their

equivalents defined in JSR 303 (Bean Validation). These attributes include --notNull, --sizeMin, --
sizeMax and other related attributes. Please refer to the field command in the appendix to review the

different attributes offered.

http://jcp.org/en/jsr/detail?id=303

1.3.0.RELEASE 65

Chapter 9. Incremental Database Reverse
Engineering (DBRE) Add-On

The incremental database reverse engineering (DBRE) add-on allows you to create an application tier

of JPA 2.0 entities based on the tables in your database. DBRE will also incrementally maintain your

application tier if you add or remove tables and columns.

9.1. Introduction

9.1.1. What are the benefits of Roo's incremental reverse engineering?

Traditional JPA reverse engineering tools are designed to introspect a database schema and produce

a Java application tier once. Roo's incremental database reverse engineering feature differs because

it has been designed to enable developers to repeatedly re-introspect a database schema and update

their Java application. For example, consider if a column or table has been dropped from the database

(or renamed). With Roo the re-introspection process would discover this and helpfully report errors

in the Java tier wherever the now-missing field or entity was referenced. In simple terms, incremental

database reverse engineering ensures Java type safety and easy application maintenance even if the

database schema is constantly evolving. Just as importantly, Roo's incremental reverse engineering

is implemented using the same unique design philosophy as the rest of Roo. This means very fast

application delivery, clutter-free .java source files, extensive usability features in the shell (such as tab

completion and hinting) and so on.

9.1.2. How does DBRE work?

9.1.2.1. Obtaining database metadata

The DBRE commands (see Section 9.3, “DBRE Add-On commands” below) make live connections

to the database configured in your Roo project and obtain database metadata from the JDBC driver's

implementation of the standard java.sql.DatabaseMetadata interface. When the database is reverse

engineered, the metadata information is converted to XML and is stored and maintained in the

dbre.xml file in the src/main/resources directory of your project. DBRE creates JPA entities based

on the table names in your database and fields based on the column names in the tables. Simple and

composite primary keys are supported (see Section 9.5.2, “Composite primary keys” for more details)

and relationships between entities are also created using the imported and exported key information

obtained from the metadata.

9.1.2.2. Class and field name creation

DBRE creates entity classes with names that are derived from the associated table name using a simple

algorithm. If a table's name contains an underscore, hyphen, forward or back slash character, an upper

case letter is substituted for each of these characters. This is also similar for column and field names.

The following tables contain some examples.

Table name DBRE-produced entity class name

order Order.java

line_item LineItem.java

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 66

Table name DBRE-produced entity class name

EAM_MEASUREMENT_DATA_1H EamMeasurementData1h.java

COM-FOO\BAR ComFooBar.java

Column name DBRE-produced field name

order order

EMPLOYEE_NUMBER employeeNumber

USR_CNT usrCnt

9.2. Installation

DBRE supports most of the relational databases that can be configured for Roo-managed projects

such as MySQL, MS SQL, and PostgreSQL. These drivers are auto-detected by Roo and you will

be prompted by the Roo shell to download your configured database's JDBC driver when you first

issue the database introspect or database reverse engineer commands (see Section 9.3, “DBRE Add-On

commands” below). For example, if you have configured your Roo project to use a MySQL database,

when the database introspect command is first issued, you will see the following console output:

roo> database introspect --schema no-schema-required

Located add-on that may offer this JDBC driver

1 found, sorted by rank; T = trusted developer; R = Roo 1.1 compatible

ID T R DESCRIPTION ---

01 Y Y 5.1.13.0001 #jdbcdriver driverclass:com.mysql.jdbc.Driver. This...

--

[HINT] use 'addon info id --searchResultId ..' to see details about a search result

[HINT] use 'addon install id --searchResultId ..' to install a specific search result, or

[HINT] use 'addon install bundle --bundleSymbolicName TAB' to install a specific add-on version

JDBC driver not available for 'com.mysql.jdbc.Driver'

You can get further information about the search result with the following command:

roo> addon info id --searchResultId 01

This may list several versions of a driver if available.

You can then install the latest MySQL JDBC driver by entering the following Roo command:

roo> addon install id --searchResultId 01

Alternatively, to install a different version (if available) of the driver you can use the following

command:

roo> addon install bundle --bundleSymbolicName org.springframework.roo.wrapping.mysql-connector-java;<version>

The JDBC driver for MySQL is immediately available for you to use. You can now enter the database

introspect and database reverse engineer commands (see Section 9.3, “DBRE Add-On commands”

below).

Note: currently there are no open-source JDBC drivers for Oracle or DB2 and Roo does not provide

OSGi drivers for these databases. If you are an Oracle or DB2 user, you will need to obtain an OSGi-

http://www.mysql.com/
http://www.microsoft.com/sqlserver
http://www.postgresql.org/

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 67

enabled driver from Oracle or IBM respectively or wrap your own Oracle or DB2 driver jars using

Roo's wrapping facility. Use the addon create wrapper to turn an existing Oracle JDBC driver into an

OSGi bundle you can install into Roo. Roo does provide a wrapping pom.xml for the DB2 Express-

C edition that can be used to convert your db2jcc4.jar into an OSGi-compliant driver. You can then

use the osgi start command to install the jar, for example:

roo> osgi start --url file:///tmp/org.springframework.roo.wrapping.db2jcc4-9.7.2.0001.jar

9.3. DBRE Add-On commands

After you have configured your persistence layer with the jpa setup command and installed all the

JDBC drivers, you can introspect and reverse engineer the database configured for your project. DBRE

contains two commands:

1. roo> database introspect --schema --file --enableViews

This command displays the database structure, or schema, in XML format. The --schema is

mandatory and for databases which support schemas, you can press tab to display a list of schemas

from your database. You can use the --file option to save the information to the specified file.

The --enableViews option when specified will also retrieve database views and display them with

the table information.

Notes:

• The term "schema" is not used by all databases, such as MySQL and Firebird, and for these

databases the target database name is contained in the JDBC URL connection string. However the

--schema option is still required but Roo's tab assist feature will display "no-schema-required".

• PostgreSQL upper case schema names are not supported.

2. roo> database reverse engineer --schema --package --activeRecord --repository

 --service --testAutomatically --enableViews

 --includeTables --excludeTables

 --includeNonPortableAttributes

 --disableVersionFields --disableGeneratedIdentifiers

This command creates JPA entities in your project representing the tables and columns in your

database. As for the database introspect command, the --schema option is required and tab assistance

is available. You can use the --package option to specify a Java package where your entities will

be created. If you do not specify the --package option on second and subsequent executions of the

database reverse engineer command, new entities will be created in the same package as they were

previously created in.

Use the --activeRecord option to create 'Active Record' entities (default if not specified).

Use the --repository option to create Spring Data JPA Repositories for each entity. If specified as

true, the --activeRecord option is ignored.

Use the --service option to create a service layer for each entity.

Use the --testAutomatically option to create integration tests automatically for each new entity

created by reverse engineering.

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 68

The --enableViews option when specified will also retrieve database views and reverse engineer

them into entities. Note that this option should only be used in specialised use cases only, such as

those with database triggers.

You can generate non-portable JPA @Column attributes, such as 'columnDefinition' by specifying

the --includeNonPortableAttributes option.

Use the --disableVersionFields option to disable the generation of 'version' fields.

Use the --disableGeneratedIdentifiers option to disable auto generated identifiers.

Since the DBRE Add-on provides incremental database reverse engineering, you can execute the

command as many times as you want and your JPA entities will be maintained by Roo, that is, new

fields will be added if new columns are added to a table, or fields will be removed if columns are

deleted. Entities are also deleted in certain circumstances if their corresponding tables are dropped.

Examples of the database reverse engineer command:

• roo> database reverse engineer --schema order --package ~.domain --excludeTables "foo* bar?"

This will reverse engineer all tables except any table whose name starts with 'foo' and any table

called bar with one extra character, such as 'bar1' or 'bars'.

You can use the --includeTables and --excludeTables option to specify tables that you want or

do not want reverse engineered respectively. The options can take one or more table names. If

more than one table is required, the tables must be enclosed in double quotes and each separated

by a space. Wild-card searching is also permitted using the asterisk (*) character to match one or

more characters or the '?' character to match exactly one character. For example:

Note: excluding tables not only prevent entities from being created but associations are also not

created in other entities. This is done to prevent compile errors in the source code.

• roo> database reverse engineer --schema order --package ~.domain --includeTables "foo* bar?"

This will reverse engineer all tables who table whose name starts with 'foo' and any table called

bar with one extra character, such as 'bar1' or 'bars'.

• You can also reverse engineer more than one schema by specifying a doubled-quoted space-

separated list of schemas. Reverse engineering of foreign-key releationships between tables in

different schemas is supported. For example:

roo> database reverse engineer --schema "schema1 schema2 schema3" --package ~.domain

This will reverse engineer all tables from schemas "schema1", "schema2", and "schema3".

9.4. The @RooDbManaged annotation

The @RooDbManaged annotation is added to all new entities created by executing the database

reverse engineer command. Other Roo annotations, @RooJpaActiveRecord, @RooJavaBean, and

@RooToString are also added to the entity class. The attribute "automaticallyDelete" is added to the

@RooDbManaged annotation and is set to "true" so that Roo can delete the entity if the associated

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 69

table has been dropped. However, if "automaticallyDelete" is set to "false", or if any annotations,

fields, constructors, or methods have been added to the entity (i.e in the .java file), or if any of the Roo

annotations are removed, the entity will not be deleted.

The presence of the @RooDbmanaged annotation on an entity class triggers the creation of an AspectJ

inter-type declaration (ITD) ".aj" file where fields and their getters and setters are stored matching

the columns in the table. For example, if an entity called Employee.java is created by the database

reverse engineer command, a file called Employee_Roo_DbManaged.aj is also created and maintained

by Roo. All the columns of the matching employee table will cause fields to be created in the entity's

DbManaged ITD. An example of a DBRE-created entity is as follows:

@RooJavaBean

@RooToString

@RooDbManaged(automaticallyDelete = true)

@RooJpaActiveRecord(table = "employee", schema = "expenses")

public class Employee {

}

Along with the standard entity, toString, configurable ITDs, a DbManaged ITD is created if there are

more columns in the employee table apart from a primary key column. For example, if the employee

table has mandatory employee name and employee number columns, and a nullable age column the

ITD could look like this:

privileged aspect Employee_Roo_DbManaged {

 @Column(name = "employee_number")

 @NotNull

 private String Employee.employeeNumber;

 public String Employee.getEmployeeNumber() {

 return this.employeeNumber;

 }

 public void Employee.setEmployeeNumber(String employeeNumber) {

 this.employeeNumber = employeeNumber;

 }

 @Column(name = "employee_name", length = "100")

 @NotNull

 private String Employee.employeeName;

 public String Employee.getEmployeeName() {

 return this.employeeName;

 }

 public void Employee.setEmployeeName(String employeeName) {

 this.employeeName = employeeName;

 }

 @Column(name = "age")

 private Integer Employee.age;

 public Integer Employee.getAge() {

 return this.age;

 }

 public void Employee.setAge(Integer age) {

 this.age = age;

 }

 ...

}

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 70

If you do not want DBRE to manage your entity any more, you can "push-in" refactor the fields and

methods in the DbManaged ITD and remove the @RooDbManaged annotation from the .java file.

9.5. Supported JPA 2.0 features

DBRE will produce and maintain primary key fields, including composite keys, entity relationships

such as many-valued and single-valued associations, and other fields annotated with the JPA @Column

annotation.

The following sections describe the features currently supported.

9.5.1. Simple primary keys

For a table with a single primary key column, DBRE causes an identifier field to be created in the entity

ITD annotated with @Id and @Column. This is similar to executing the entity jpa command by itself.

9.5.2. Composite primary keys

For tables with two or more primary key columns, DBRE will create a primary key class annotated

with @RooIdentifier(dbManaged = true) and add the "identifierType" attribute with the identifier class

name to the @RooJpaActiveRecord annotation in the entity class. For example, a line_item table

has two primary keys, line_item_id and order_id. DBRE will create the LineItem entity class and

LineItemPK identifier class as follows:

@RooJavaBean

@RooToString

@RooDbManaged(automaticallyDelete = true)

@RooJpaActiveRecord(identifierType = LineItemPK.class, table = "line_item", schema = "order")

public class LineItem {

}

@RooIdentifier(dbManaged = true)

public class LineItemPK {

}

Roo will automatically create the JPA entity ITD containing a field annotated with @EmbeddedId

with type LineItemPK as follows:

privileged aspect LineItem_Roo_JpaEntity {

 declare @type: LineItem: @Entity;

 declare @type: LineItem: @Table(name = "line_item", schema = "order");

 @EmbeddedId

 private LineItemPK LineItem.id;

 public LineItemPK LineItem.getId() {

 return this.id;

 }

 public void LineItem.setId(LineItemPK id) {

 this.id = id;

 }

 ...

}

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 71

and an identifier ITD for the LineItemPK class containing the primary key fields and the type

annotation for @Embeddable, as follows:

privileged aspect LineItemPK_Roo_Identifier {

 declare @type: LineItemPK: @Embeddable;

 @Column(name = "line_item_id", nullable = false)

 private BigDecimal LineItemPK.lineItemId;

 @Column(name = "order_id", nullable = false)

 private BigDecimal LineItemPK.orderId;

 public LineItemPK.new(BigDecimal lineItemId, BigDecimal orderId) {

 super();

 this.lineItemId = lineItemId;

 this.orderId = orderId;

 }

 private LineItemPK.new() {

 super();

 }

 ...

}

If you decide that your table does not require a composite primary key anymore, the next time you

execute the database reverse engineer command, Roo will automatically change the entity to use a

single primary key and remove the identifier class if it is permitted.

9.5.3. Entity relationships

One of the powerful features of DBRE is its ability to create relationships between entities

automatically based on the foreign key information in the dbre.xml file. The following sections

describe the associations that can be created.

9.5.3.1. Many-valued associations with many-to-many multiplicity

Many-to-many associations are created if a join table is detected by DBRE. To be identified as a many-

to-many join table, the table must have exactly two primary keys and have exactly two foreign-keys

pointing to other entity tables and have no other columns.

For example, the database contains a product table and a supplier table. The database has been modelled

such that a product can have many suppliers and a supplier can have many products. A join table called

product_supplier also exists and links the two tables together by having a composite primary key made

up of the product id and supplier id and foreign keys pointing to each of the primary keys of the product

and supplier tables. DBRE will create a bi-directional many-to-many association. DBRE will designate

which entities are the owning and inverse sides of the association respectively and annotate the fields

accordingly as shown in the following code snippets:

privileged aspect Product_Roo_DbManaged {

 @ManyToMany

 @JoinTable(name = "product_supplier",

 joinColumns = {

 @JoinColumn(name = "prod_id") },

 inverseJoinColumns = {

 @JoinColumn(name = "supp_id") })

 private Set<Supplier> Product.suppliers;

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 72

 ...

}

privileged aspect Supplier_Roo_DbManaged {

 @ManyToMany(mappedBy = "suppliers")

 private Set<Product> Supplier.products;

 ...

}

DBRE will also create many-to-many associations where the two tables each have composite primary

keys. For example:

privileged aspect Foo_Roo_DbManaged {

 @ManyToMany

 @JoinTable(name = "foo_bar",

 joinColumns = {

 @JoinColumn(name = "foo_bar_id1", referencedColumnName = "foo_id1"),

 @JoinColumn(name = "foo_bar_id2", referencedColumnName = "foo_id2") },

 inverseJoinColumns = {

 @JoinColumn(name = "foo_bar_id1", referencedColumnName = "bar_id1"),

 @JoinColumn(name = "foo_bar_id2", referencedColumnName = "bar_id2") })

 private Set<Bar> Foo.bars;

 ...

}

9.5.3.2. Single-valued associations to other entities that have one-to-one multiplicity

If the foreign key column represents the entire primary key (or the entire index) then the relationship

between the tables will be one to one and a bi-directional one-to-one association is created.

For example, the database contains a customer table and an address table and a customer can only have

one address. The following code snippets show the one-to-one mappings:

privileged aspect Address_Roo_DbManaged {

 @OneToOne

 @JoinColumn(name = "address_id")

 private Party Address.customer;

 ...

}

privileged aspect Customer_Roo_DbManaged {

 @OneToOne(mappedBy = "customer")

 private Address Party.address;

 ...

}

9.5.3.3. Many-valued associations with one-to-many multiplicity

If the foreign key column is part of the primary key (or part of an index) then the relationship between

the tables will be one to many. An example is shown below:

privileged aspect Order_Roo_DbManaged {

 @OneToMany(mappedBy = "order")

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 73

 private Set<LineItem> Order.lineItems;

 ...

}

9.5.3.4. Single-valued associations to other entities that have many-to-one multiplicity

When a one-to-many association is created, for example a set of LineItem entities in the Order entity

in the example above, DBRE will also create a corresponding many-to-one association in the LineItem

entity, as follows:

privileged aspect LineItem_Roo_DbManaged {

 @ManyToOne

 @JoinColumn(name = "order_id", referencedColumnName = "order_id")

 private Order LineItem.order;

 ...

}

9.5.3.5. Multiple associations in the same entity

DBRE will ensure field names are not duplicated. For example, if an entity has more than one

association to another entity, the field names will be created with unique names. The following code

snippet illustrates this:

privileged aspect Foo_Roo_DbManaged {

 @ManyToMany

 @JoinTable(name = "foo_bar",

 joinColumns = {

 @JoinColumn(name = "foo_bar_id1", referencedColumnName = "foo_id1"),

 @JoinColumn(name = "foo_bar_id2", referencedColumnName = "foo_id2") },

 inverseJoinColumns = {

 @JoinColumn(name = "foo_bar_id1", referencedColumnName = "bar_id1"),

 @JoinColumn(name = "foo_bar_id2", referencedColumnName = "bar_id2") })

 private Set<Bar> Foo.bars;

 @ManyToMany

 @JoinTable(name = "foo_com",

 joinColumns = {

 @JoinColumn(name = "foo_com_id1", referencedColumnName = "foo_id1"),

 @JoinColumn(name = "foo_com_id2", referencedColumnName = "foo_id2") },

 inverseJoinColumns = {

 @JoinColumn(name = "foo_com_id1", referencedColumnName = "bar_id1"),

 @JoinColumn(name = "foo_com_id2", referencedColumnName = "bar_id2") })

 private Set<Bar> Foo.bars1;

 ...

}

9.5.4. Other fields

DBRE will detect column types from the database metadata and create and maintain fields and

field annotations appropriately. Strings, dates, booleans, numeric fields, CLOBs and BLOBs are all

supported by DBRE, as well as the JSR 303 @NotNull validation constraint.

9.5.5. Existing fields

Roo checks the .java file for a field before it creates it in the ITD. If you code a field in the entity's .java

file, Roo will not create the field in the DbManaged ITD if detected in the database metadata. For

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 74

example, if your table has a column called 'name' and you have added a field called 'name' to the .java

file, Roo will not create this field in the ITD when reverse engineered.

Roo also ensures the entity's identity field is unique. For example if the @Id field is called 'id' but you

also add a field with the same name to the .java file, DBRE will automatically rename the @Id field

by prefixing it with an underscore character.

9.6. Troubleshooting

This section explains scenarios that may be encountered when using the DBRE feature.

• Executing the database introspect or database reverse engineer commands causes the message
'JDBC driver not available for oracle.jdbc.OracleDriver' to be displayed

This is due to the Oracle JDBC driver not having been installed. The driver must be installed if

you have installed Roo for the first time. See Section 9.2, “Installation”. This also applies to other

databases, for example, HSQL and H2.

• Executing the database introspect or database reverse engineer commands with the
Firebird database configured causes the message 'Exception in thread "JLine Shell"
java.lang.NoClassDefFoundError: javax/resource/ResourceException' to be displayed

This is due to the javax.resource connector jar not installed. Remove the cache directory under your

Roo installation directory, start the Roo shell, and run the command:

osgi start --url

 http://spring-roo-repository.springsource.org/release/org/springframework/roo/wrapping/org.springframework.roo.wrapping.connector/1.0.0010/org.springframework.roo.wrapping.connector-1.0.0010.jar

Re-install the Firebird driver. See Section 9.2, “Installation”.

• The error message 'Caused by: org.hibernate.HibernateException: Missing sequence or table:
hibernate_sequence' appears when starting Tomcat

When the database reverse engineer command is first run, the property determining whether tables

are created and dropped which is defined in the persistence.xml file is modified to a value that

prevents new database artifacts from being created. This is done to avoid deleting the data in your

tables when unit tests are run or a web application is started. For example, if you use Hibernate as

your JPA 2.0 provider the property is called 'hibernate.hbm2ddl.auto' and is initially set to 'create'

when the project is first created. This value causes Hibernate to create tables and sequences and

allows you to run unit tests and start a web application. However, the property's value is changed

to 'validate' when the database reverse engineer command is executed. Other JPA providers such

as EclipseLink and OpenJPA have a similar property which are also changed when the command

is run. If you see this issue when running unit tests or when starting your web application after

reverse engineering, you may need to change the property back to 'create' or 'update'. Check your

persistence.xml for the property values for other JPA providers.

• The message 'Unable to maintain database-managed entity <entity name> because its
associated table name could not be found' appears in the Roo console during reverse
engineering

When DBRE first creates an entity it puts in the table name in the 'table' attribute of the

@RooJpaActiveRecord annotation. This is the only mechanism DBRE has for associating an entity

Incremental Database Reverse Engineering (DBRE) Add-On

1.3.0.RELEASE 75

with a table. If you remove the 'table' attribute, DBRE has no way of determining what the entity's

corresponding table is and as a result cannot maintain the entity's fields and associations.

1.3.0.RELEASE 76

Chapter 10. Application Layering

Java enterprise applications can take many shapes and forms depending on their requirements.

Depending on these requirements, you need to decide which layers your application needs. Many

applications won't benefit from additional complexity and maintenance cost of service or repository

layers unless there is a need. With version 1.2.0 Spring Roo offers support for specific application

layering tailored to the needs of the application. This section provides an overview of Roo's support

for service and repository layers.

Note: This section provides an overview of the application layering options Spring Roo offers

since the 1.2.0.M1 release. It does not discuss the merits of different approaches to architecting

enterprise applications.

10.1. The Big Picture

With the Roo 1.2.0 release internals have been changed to allow the integration of multiple application

layers. This is particularly useful for the support of different persistence mechanisms. In previous

releases the only persistence supported in Roo core was the JPA Entity Active Record pattern. With

the internal changes in place Roo can now support alternative persistence providers which support

application layering.

While there are a number of new layering and persistence choices available, by default Roo will

continue to support the JPA Active Record Entity by default (marked orange). However, you can easily

change existing applications by adding further service or repository layers (details below). If you add

new layers Roo will automatically change its ITDs in the consumer layer or service layer respectively.

For example it will automatically inject and call a new service layer within an existing MVC controller,

Integration test or data on demand for a given domain type.

10.2. Persistence Layers

There are now three options available in Roo core to support data persistence, JPA Entities (Active

Record style), JPA Repositories and MongoDB Repositories.

Application Layering

1.3.0.RELEASE 77

10.2.1. JPA Entities (Active Record style)

Active record-style JPA Entities have been the default since the first release of Spring Roo and will

remain so. In order to configure your project for JPA persistence, you can run the jpa setup command:

roo> jpa setup --provider HIBERNATE --database HYPERSONIC_PERSISTENT

This configures your project to use the Hibername object relational mapper along with a in-memory

database (HSQLDB). Further details about this persistence option can be found here.

Active record-style JPA entities supported by Roo need to have a @RooJpaActiveRecord annotation

which takes care of providing an ID field along with its accessor and mutator, In addition this annotation

creates the typical CRUD methods to support data access.

roo> entity jpa --class ~.domain.Pizza

This command will create a Pizza domain type along with active record-style methods to persist,

update, read and delete your entity. The following example also contains a number of fields which can

be added through the field command via the Roo shell.

@RooJavaBean

@RooToString

@RooJpaActiveRecord

public class Pizza {

 @NotNull

 @Size(min = 2)

 private String name;

 private BigDecimal price;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Topping> toppings = new HashSet<Topping>();

 @ManyToOne

 private Base base;

}

Further details about command options and functionalities provided by active record-style JPA Entities

please refer to the Persistence Add-on chapter.

10.2.2. JPA Repository

Developers who require a repository / DAO layer instead of the default Roo entity-based persistence

approach can do so by creating a Spring Data JPA backed repository for a given JPA domain type.

The domain type backing the repository needs have a JPA @Entity annotation and also a ID field

defined along with accessors and mutators. After configuring your project for JPA persistence via the

jpa setup command, this functionality is automatically provided by annotating the domain type with

Roo's @RooJpaEntity annotation.

roo> entity jpa --class ~.domain.Pizza --activeRecord false

By defining --activeRecord false you can opt out of the otherwise default Active Record style. The

following example also contains a number of fields which can be added through the field command

via the Roo shell.

@RooJavaBean

@RooToString

http://projects.spring.io/spring-data-jpa/

Application Layering

1.3.0.RELEASE 78

@RooJpaEntity

public class Pizza {

 @NotNull

 @Size(min = 2)

 private String name;

 private BigDecimal price;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Topping> toppings = new HashSet<Topping>();

 @ManyToOne

 private Base base;

}

With a domain type in place you can now create a new repository for this type by using the repository

jpa command:

roo> repository jpa --interface ~.repository.PizzaRepository --entity ~.domain.Pizza

This will create a simple interface definition which leverages Spring Data JPA:

@RooJpaRepository(domainType = Pizza.class)

public interface PizzaRepository {

}

Of course, you can simply add the @RooJpaRepository annotation on any interface by hand in lieu

of issuing the repository jpa command in the Roo shell.

The adition of the @RooJpaRepository annotation will trigger the creation of a fairly trivial AspectJ

ITD which adds an extends statement to the PizzaRepository interface resulting in the equivalent of

this interface definition:

public interface PizzaRepository extends JpaRepository<Pizza, Long> {}

Note, the JpaRepository interface is part of the Spring Data JPA API and provides all CRUD

functionality out of the box.

10.2.3. MongoDB Persistence

As an alternative to JPA persistence, Spring Roo offers MongoDB support by leveraging the Spring

Data MongoDB project.

10.2.3.1. Setup

To configure a project for MongoDB persistence you can use the mongo setup command:

roo> mongo setup

This will configure your Spring Application context to use a MongoDB installation running on

localhost and the default port. Optional command attributes allow you to define host, port, database

name, username and password. Furthermore, to configure your application for deployment on VMware

CloudFoundry you can use the --cloudFoundry attribute.

10.2.3.2. Entities

Once the application is configured for MongoDB support, the entity mongo and repository mongo

commands become available:

http://docs.spring.io/spring-data/data-jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
http://projects.spring.io/spring-data-jpa/
http://www.mongodb.org/
http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-mongodb/
http://cloudfoundry.com/
http://cloudfoundry.com/

Application Layering

1.3.0.RELEASE 79

roo> entity mongo --class ~.domain.Pizza

This command will create a Pizza domain type annotated with @RooMongoEntity. This annotation

is responsibe for triggering the creation of an ITD which provides a Spring Data ID annotated field as

well as its accessor and mutator. The following example also contains a number of fields which can

be added through the field command via the Roo shell.

@RooJavaBean

@RooToString

@RooMongoEntity

public class Pizza {

 @NotNull

 @Size(min = 2)

 private String name;

 private BigDecimal price;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Topping> toppings = new HashSet<Topping>();

 @ManyToOne

 private Base base;

}

10.2.3.3. Repository

With a domain type in place you can now create a new repository for this type by using the repository

mongo command (or by applying the @RooMongoRepository annotation to an arbitrary interface:

roo> repository mongo --interface ~.repository.PizzaRepository --entity ~.domain.Pizza

This will create a simple interface definition which leverages Spring Data MongoDB:

@RooMongoRepository(domainType = Pizza.class)

public interface PizzaRepository {

 List<Pizza> findAll();

}

Similar the Spring Data JPA driven repository seen above, this interface is augmented through an ITD

which introduces the PagingAndSortingRepository provided by the Spring Data API and is responsible

for providing all necessary CRUD functionality. In addition this interface defines a 'custom' finder

which is not offered by the PagingAndSortingRepository implementation: List<Pizza> findAll();. This

method iis required by Spring Roo's UI scaffolding and is automatically implemented by the query

builder mechanism offered by Spring Data MongoDB.

10.2.3.4. Example & Cloud Foundry Deployment

Similar to applications which use JPA persistence (see this blog for details on using JPA with Postgres)

MongoDB applications can be easily deployed to VMware CloudFoundry. The following script

provides an example of the Pizza Shop sample application which has been adjusted for use with a

MongoDB-backed repository layer:

// Create a new project.

project com.springsource.pizzashop

http://projects.spring.io/spring-data-mongodb/
http://docs.spring.io/spring-data/data-commons/docs/1.1.0.RELEASE/api/org/springframework/data/repository/PagingAndSortingRepository.html
http://docs.spring.io/spring-data/data-commons/docs/1.1.0.RELEASE/api/org/springframework/data/repository/PagingAndSortingRepository.html
http://docs.spring.io/spring-data/data-document/docs/1.0.0.M4/reference/html/#repositories.definition-tuning
http://docs.spring.io/spring-data/data-document/docs/1.0.0.M4/reference/html/#repositories.definition-tuning
http://blog.springsource.com/2011/08/30/using-postgres-on-cloud-foundry/
http://cloudfoundry.com/

Application Layering

1.3.0.RELEASE 80

// Create configuration for MongoDB peristence

mongo setup --cloudFoundry true

// Define domain model.

entity mongo --class ~.domain.Base --testAutomatically

field string --fieldName name --sizeMin 2 --notNull --class ~.domain.Base

entity mongo --class ~.domain.Topping --testAutomatically

field string --fieldName name --sizeMin 2 --notNull --class ~.domain.Topping

entity mongo --class ~.domain.Pizza --testAutomatically

field string --fieldName name --notNull --sizeMin 2 --class ~.domain.Pizza

field number --fieldName price --type java.lang.Float

field set --fieldName toppings --type ~.domain.Topping

field reference --fieldName base --type ~.domain.Base

entity mongo --class ~.domain.PizzaOrder --testAutomatically

field string --fieldName name --notNull --sizeMin 2 --class ~.domain.PizzaOrder

field string --fieldName address --sizeMax 30

field number --fieldName total --type java.lang.Float

field date --fieldName deliveryDate --type java.util.Date

field set --fieldName pizzas --type ~.domain.Pizza

// Add layer support.

repository mongo --interface ~.repository.ToppingRepository --entity ~.domain.Topping

repository mongo --interface ~.repository.BaseRepository --entity ~.domain.Base

repository mongo --interface ~.repository.PizzaRepository --entity ~.domain.Pizza

repository mongo --interface ~.repository.PizzaOrderRepository --entity ~.domain.PizzaOrder

service type --interface ~.service.ToppingService --entity ~.domain.Topping

service type --interface ~.service.BaseService --entity ~.domain.Base

service type --interface ~.service.PizzaService --entity ~.domain.Pizza

service type --interface ~.service.PizzaOrderService --entity ~.domain.PizzaOrder

// Create a Web UI.

web mvc setup

web mvc all --package ~.web

// Package the application into a war file.

perform package

// Deploy and start the application in CloudFoundry

cloud foundry login

cloud foundry deploy --appName roo-pizzashop --path /target/pizzashop-0.1.0.BUILD-SNAPSHOT.war --memory 512

cloud foundry create service --serviceName pizzashop-mongo --serviceType mongodb

cloud foundry bind service --serviceName pizzashop-mongo --appName roo-pizzashop

cloud foundry start app --appName roo-pizzashop

10.3. Service Layer

Developers can also choose to create a service layer in their application. By default, Roo will create a

service interface (and implementation) for one or more domain entities. If a persistence-providing layer

such as Roo's default entity layer or a repository layer is present for a given domain entity, the service

layer will expose the CRUD functionality provided by this persistence layer through its interface and

implementation.

As per Roo's conventions all functionality will be introduced via AspectJ ITDs therefore providing

the developer a clean canvas for implementing custom business logic which does not naturally fit into

domain entities. Other common use cases for service layers are security or integration of remoting such

as Web Services. For a more detailed discussion please refer to the architecture chapter.

The integration of a services layer into a Roo project is similar to the repository layer by using the

@RooService annotation directly or the service command in the Roo shell:

roo> service --interface ~.service.PizzaService --entity ~.domain.Pizza

Application Layering

1.3.0.RELEASE 81

This command will create the PizzaService interface in the defined package and additionally a

PizzaServiceImpl in the same package (the name and package of the PizzaServiceImpl can be

customized via the optional --class attribute).

@RooService(domainTypes = { Pizza.class })

public interface PizzaService {

}

Following Roo conventions the default CRUD method definitions can be found in the ITD:

void savePizza(Pizza pizza);

Pizza findPizza(Long id);

List<Pizza> findAllPizzas();

List<Pizza> findPizzaEntries(int firstResult, int maxResults);

long countAllPizzas();

Pizza updatePizza(pizza pizza);

void deletePizza(Pizza pizza);

Similarly, the PizzaServiceImpl is rather empty:

public class PizzaServiceImpl implements PizzaService {

}

Through the AspectJ ITD the PizzaServiceImpl type is annotated with the @Service and

@Transactional annotations by default. Furthermore the ITD will introduce the following methods

and fields into the target type:

@Autowired PizzaRepository pizzaRepository;

public void savePizza(Pizza pizza) {

 pizzaRepository.save(pizza);

}

public Pizza findPizza(Long id) {

 return pizzaRepository.findOne(id);

}

public List<Pizza> findAllPizzas() {

 return pizzaRepository.findAll();

}

public List<Pizza> findPizzaEntries(int firstResult, int maxResults) {

 return pizzaRepository.findAll(new PageRequest(firstResult / maxResults, maxResults)).getContent();

}

public long countAllPizzas() {

 return pizzaRepository.count();

}

public Pizza updatePizza(Pizza pizza) {

 return pizzaRepository.save(pizza);

}

public void deletePizza(Pizza pizza) {

 pizzaRepository.delete(pizza);

}

As you can see, Roo will detect if a persistence provider layer exists for a given domain type and

automatically inject this component in order to delegate all service layer calls to this layer. In case no

persistence (or other 'lower level' layer exists, the service layer ITD will simply provide method stubs.

1.3.0.RELEASE 82

Chapter 11. Web MVC Add-On

CSS considerations: The Web UI has been tested successfully with FireFox, Opera, Safari,

Chrome, and IE. Given that IE6 is not supported any more by most players in the market, it has

a number of severe technical limitations and it has a fast declining user base Spring Roo does

not support IE6. Your mileage may vary - there will likely be issues with CSS support.

The Web MVC add-ons allow you to conveniently scaffold Spring MVC controllers and JSP(X) views

for an existing domain model. Currently this domain model is derived from the Roo supported JPA

integration through the entity jpa and related field commands. As shown in the Introduction and the

Beginning With Roo: The Tutorial the Web MVC scaffolding can deliver a fully functional Web

frontend to your domain model. The following features are included:

• Automatic update of JSPX view artifacts reflecting changes in the domain model

• A fully customizable set JSP of tags is provided, all tags are XML only (no tag-backing Java source

code is required)

• Tags offer integration with the Dojo Ajax toolkit for client-side validation, date pickers, tool tips,

filtering selects etc

• Automatic URL rewriting to provide best-practice RESTful URIs

• Integration of Apache Tiles templating framework to allow for structural customization of the Web

user interface

• Use of cascading stylesheets to allow for visual customization of the Web user interface

• Use of Spring MVC themeing support to dynamically adjust Web user interface by changing CSS

• Internationalization of complete Web UI is supported by simply adding new message bundles (6+

languages are already suppprted)

• Pagination integration for large datasets

• Client- and server-side validation based on JSR 303 constraints defined in the domain layer

• Generated controllers offer best-practice use of Spring framework MVC support

The following sections will offer further details about available commands to generate Web MVC

artifacts and also the new JSP(X) round-tripping model introduced in Roo 1.1.

11.1. Controller commands

The Web MVC addon offers a number of commands to generate and maintain various Web artifacts:

1. ~.Person roo> web mvc setup

The first time the web mvc setup command is executed Roo will install all artifacts required for

the Web UI.

http://en.wikipedia.org/wiki/Internet_Explorer_6#Criticism
http://www.dojotoolkit.org/
http://tiles.apache.org/

Web MVC Add-On

1.3.0.RELEASE 83

2. ~.Person roo> web mvc scaffold --class com.foo.web.PersonController

The controller scaffold command will create a Spring MVC controller for the Person entity with

the following method signatures:

Method Signature Comment

public String create(@Valid Person person,

BindingResult result, ModelMap modelMap) {..}

The create method is triggered by HTTP POST

requests to /<app-name>/people. The submitted form

data will be converted to a Person object and validated

against JSR 303 constraints (if present). Response is

redirected to the show method.

public String createForm(ModelMap modelMap) {..} The create form method is triggered by a HTTP GET

request to /<app-name>/people?form. The resulting

form will be prepopulated with a new instance of

Person, referenced Cars and datepatterns (if needed).

Returns the Tiles view name.

public String show(@PathVariable("id") Long id,

ModelMap modelMap) {..}

The show method is triggered by a HTTP GET request

to /<app-name>/people/<id>. The resulting form is

populated with a Person instance identifier by the id

parameter. Returns the Tiles view name.

public String list(@RequestParam(value = "page",

required = false) Integer page, @RequestParam(value

= "size", required = false) Integer size, ModelMap

modelMap) {..}

The list method is triggered by a HTTP GET request

to /<app-name>/people. This method has optional

parameters for pagination (page, size). Returns the

Tiles view name.

public String update(@Valid Person person,

BindingResult result, ModelMap modelMap) {..}

The update method is triggered by a HTTP PUT

request to /<app-name/people. The submitted form

data will be converted to a Person object and validated

against JSR 303 constraints (if present). Response is

redirected to the show method.

public String updateForm(@PathVariable("id") Long

id, ModelMap modelMap) {

The update form method is triggered by a HTTP

GET request to /<app-name>/people/<id>?form. The

resulting form will be prepopulated with a Person

instance identified by the id parameter, referenced Cars

and datepatterns (if needed). Returns the Tiles view

name.

public String delete(@PathVariable("id") Long id,

@RequestParam(value = "page", required = false)

Integer page, @RequestParam(value = "size", required

= false) Integer size) {..}

The delete method is triggered by a HTTP DELETE

request to /<app-name>/people/<id>. This method

has optional parameters for pagination (page, size).

Response is redirected to the list method.

public Collection<Car> populateCars() {..} This method prepopulates the 'car' attribute. This

method can be adjusted to handle larger collections in

different ways (pagination, caching, etc).

Web MVC Add-On

1.3.0.RELEASE 84

Method Signature Comment

void addDateTimeFormatPatterns(ModelMap

modelMap) {..}

Method to register date and time patterns used for date

and time binding for form submissions.

As you can see Roo implements a number of methods to offer a RESTful MVC frontend to your

domain layer. All of these methods can be found in the PersonController_Roo_Controller.aj ITD.

Feel free to push-in any (or all) of these methods to change default behaviour implemented by Roo.

The web mvc scaffold command offers a number of optional attributes which let you refine

the way paths are managed and which methods should be generated in the controller. The --
disallowedOperations attribute helps you refine which methods should not be generated in the

scaffolded Roo controller. If you want to prevent several methods from being generated provide

a comma-separated list (i.e.: --disallowedOperations delete,update,create). You can also specify

which methods should be generated and which not in the PersonController.java source:

@RooWebScaffold(path = "people", formBackingObject = Person.class, create = false,

 update = false, delete = false)

@RequestMapping("/people")

@Controller

public class PersonController {}

If you don't define a custom path Roo will use the plural representation of the simple name of the

form backing entity (in our case 'people'). If you wish you can define more complex custom paths

like /public/people or /my/special/person/uri (try to to stick to REST patterns if you can though). A

good use case for creating controllers which map to custom paths is security. You can, for example

create two controllers for the Person entity. One with the default path (/people) for public access

(possibly with delete, and update functionality disabled) and one for admin access (/admin/people).

This way you can easily secure the /admin/* path with the Spring Security addon.

3. roo> web mvc all --package ~.web

The web mvc all command provides a convenient way to quickly generate Web MVC controllers

for all JPA entities Roo can find in your project. You need to specify the --package attribute to

define a package where these controllers should be generated. While the web mvc all command

is convenient, it does not give you the same level of control compared to the web mvc scaffold

command.

4. roo> web mvc controller --class com.foo.web.CarController --preferredMapping /public/car

Created SRC_MAIN_JAVA/com/foo/web/CarController.java

Created SRC_MAIN_WEBAPP/WEB-INF/views/public/car

Created SRC_MAIN_WEBAPP/WEB-INF/views/public/car/index.jspx

Managed SRC_MAIN_WEBAPP/WEB-INF/i18n/application.properties

Managed SRC_MAIN_WEBAPP/WEB-INF/views/menu.jspx

Created SRC_MAIN_WEBAPP/WEB-INF/views/public/car/views.xml

The web mvc controller command is different from the other two controller commands shown

above. It does not generate an ITD with update, create, delete and other methods to integrate with a

specific form backing entity. Instead, this command will create a simple controller to help you get

started for developing a custom functionality by stubbing a simple get(), post() and index() method

inside the controller:

@RequestMapping("/public/car/**")

Web MVC Add-On

1.3.0.RELEASE 85

@Controller

public class CarController {

 @RequestMapping

 public void get(ModelMap modelMap, HttpServletRequest request,

 HttpServletResponse response) {

 }

 @RequestMapping(method = RequestMethod.POST, value = "{id}")

 public void post(@PathVariable Long id, ModelMap modelMap, HttpServletRequest request,

 HttpServletResponse response) {

 }

 @RequestMapping

 public String index() {

 return "public/car/index";

 }

}

In addition, this controller is registered in the Web MVC menu and the application Tiles definition.

Furthermore, a simple view (under WEB-INF/views/public/car/index.jspx).

5. roo> web mvc finder add --class ~.web.PersonController --formBackingType ~.domain.Person

The web mvc finder add command used from the Roo shell will introdroduce the @RooWebFinder
annotation into the specified target type.

6. roo> web mvc finder all

The web mvc finder all command used from the Roo shell will introdroduce the @RooWebFinder
annotations to all existing controllers which have a form backing type that offers dynamic finders.

11.2. Application Conversion Service

Whenever a controller is created for the first time in an application, Roo will also install an application-

wide ConversionService and configure it for use in webmvc-config.xml as follows:

<mvc:annotation-driven conversion-service="applicationConversionService"/>

...

<bean id="applicationConversionService" class="com.springsource.vote.web.ApplicationConversionServiceFactoryBean"/>

Spring MVC uses the ConversionService when it needs to convert between two objects types -- e.g.

Date and String. To become more familiar with its features we recommend that you review the (brief)

sections on "Type Conversion" and "Field Formatting" in the Spring Framework documentation.

The ApplicationConversionServiceFactoryBean is a Roo-managed Java class and it looks like this:

@RooConversionService

public class ApplicationConversionServiceFactoryBean extends FormattingConversionServiceFactoryBean {

 @Override

 protected void installFormatters(FormatterRegistry registry) {

 super.installFormatters(registry);

 // Register application converters and formatters

 }

}

Web MVC Add-On

1.3.0.RELEASE 86

As the comment indicates you can use the installFormatters() method to register any Converters and

Formatters you wish to add. In addition to that Roo will automatically maintain an ITD with Converter

registrations for every associated entity that needs to be displayed somewhere in a view. A typical use

case is where entities from a many-to-one association need to be displayed in one of the JSP views.

Rather than using the toString() method for that, a Converter defines the formatting logic for how to

present the associated entity as a String.

Note, a custom written or pushed in converter method needs to be registered

manually via the installFormatters method which is already present in your

ApplicationConversionServiceFactoryBean.java source code.

In some cases you may wish to customize how a specific entity is formatted as a String in JSP views.

For example suppose we have an entity called Vote. To customize how it is displayed in the JSP views

add a method like this:

@RooConversionService

public class ApplicationConversionServiceFactoryBean extends FormattingConversionServiceFactoryBean {

 // ...

 public Converter<Vote, String> getVoteConverter() {

 return new Converter<Vote, String>() {

 public String convert(Vote source) {

 return new StringBuilder().append(

 source.getIp()).append(" ").append(source.getRegistered()).toString();

 }

 };

 }

}

At this point Roo will notice that the addition of the method and will remove it from the ITD much

like overriding the toString() method in a Roo entity works.

Note, in some cases you may create a form backing entity which does not contain any suitable fields for

conversion. For example, the entity may only contain a field indicating a relationship to another entity

(i.e. type one-to-one or one-to-many). Since Roo does not use these fields for its generated converters it

will simply omit the creation of a converter for such form backing entities. In these cases you may have

to provide your own custom converter to convert from your entity to a suitable String representation

in order to prevent potential converter exceptions.

11.3. JSP Views

As mentioned in the previous section, Roo copies a number of static artifacts into the target project

after issuing the controller command for the first time. These artifacts include Cascading Style Sheets,

images, Tiles layout definitions, JSP files, message property files, a complete tag library and a web.xml

file. These artifacts are arranged in different folders which is best illustrated in the following picture:

http://tiles.apache.org/

Web MVC Add-On

1.3.0.RELEASE 87

Web MVC Add-On

1.3.0.RELEASE 88

The i18n folder contains translations of the Web UI. The messages_XX.properties files are static

resources (which will never be adjusted after the initial installation) which contain commonly used

literals which are part of the Web UI. The application.properties file will be managed by Roo to contain

application-specific literals. New types or fields added to the domain layer will result in new key/

value combinations being added to this file. If you wish to translate the values generated by Roo in the

application.properties file, just create a copy of this file and rename it to application_XX.properties

(where XX represents your language abbreviation).

Roo uses XML compliant JSP files (JSPX) instead of the more common JSP format to allow round-

tripping of views based on changes in the domain layer of your project. Not all jspx files in the target

project are managed by Roo after the initial installation (although future addons may choose to do so).

Typically jspx files in sub folders under WEB-INF/views are maintained in addition to the menu.jspx.

Here is an example of a typical roo managed jspx file (i.e.: WEB-INF/views/people/update.jspx):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<div xmlns:field="urn:jsptagdir:/WEB-INF/tags/form/fields"

 xmlns:form="urn:jsptagdir:/WEB-INF/tags/form"

 xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

 <jsp:output omit-xml-declaration="yes"/>

 <form:update id="fu_com_foo_Person" modelAttribute="person" path="/people"

 z="3lX+WZW4CQVBb7OlvB0AvdgbGRQ=">

 <field:datetime dateTimePattern="${person_birthday_date_format}" field="birthDay"

 id="c_com_foo_Person_birthDay" z="dXnEoWaz4rI4CKD9mlz+clbSUP4="/>

 <field:select field="car" id="c_com_foo_Person_car" itemValue="id" items="${cars}"

 path="/cars" z="z2LA3LvNKRO9OISmZurGjEczHkc="/>

 <field:select field="cars" id="c_com_foo_Person_cars" itemValue="id" items="${cars}"

 multiple="true" path="/cars" z="c0rdAISxzHsNvJPFfAmEEGz2LU4="/>

 </form:update>

</div>

You will notice that this file is fairly concise compared to a normal jsp file. This is due to the extensive

use of the tag library which Roo has installed in your project in the WEB-INF/tags folder. Each tag

offeres a number of attributes which can be used to customize the appearance / behaviour of the tag

- please use code completion in your favourite editor to review the options or take a peek into the

actual tags.

All tags are completely self-reliant to provide their functionality (there are no Java sources needed to

implement specific behaviour of any tag). This should make it very easy to customize the behaviour of

the default tags without any required knowledge of traditional Java JSP tag development. You are free

to customize the contents of the Roo provided tag library to suit your own requirements. You could

even offer your customized tag library as a new addon which other Roo users could install to replace

the default Roo provided tag library.

Most tags have a few common attributes which adhere with Roo conventions to support round-tripping

of the jspx artifacts. The following rules should be considered if you wish to customize tags or jspx

files in a Roo managed project:

• The id attribute is used by Roo to find existing elements and also to determine message labels used

as part of the tag implementation. Changing a tag identifier will result in another element being

generated by Roo when the Roo shell is active.

• Roo provided tags are registered in the root element of the jspx document and are assigned a

namespace. You should be able to see element and attribute code completion when using a modern

IDE (i.e. SpringSource Tool Suite)

Web MVC Add-On

1.3.0.RELEASE 89

• The z attribute represents a hash key for a given element (see a detailed discussion of the hash key

attribute in the paragraph below).

The hash key attribute is important for Roo because it helps determining if a user has altered a Roo

managed element. This is the secret to round-trip support for JSPX files, as you can edit anything at

any time yet Roo will be able to merge in changes to the JSPX successfully. The hash key shown in

the "z" attribute is calculated as shown in the following table:

Included in hash key calculation Not included in hash key calculation

Element name (name only, not namespace) Namespace of element name

Attribute names present in element White spaces used in the element

Attribute values present in the element Potential child elements

The z key and its value

Any attribute (and value) whose name starts with '_'

The order of the attributes does not contribute to the

value of a hash key

The hash code thus allows Roo to determine if the element is in its "original" Roo form, or if the

user has modified it in some way. If a user changes an element, the hash code will not match and this

indicates to Roo that the user has customized that specific element. Once Roo has detected such an

event, Roo will change the "z" attribute value to "user-managed". This helps clarify to the user that Roo

has adopted a "hands off" approach to that element and it's entirely the user's responsibility to maintain.

If the user wishes for Roo to take responsibility for the management of a "user-managed" element

once again, he or she can simply change the value of "z" to "?". When Roo sees this, it will replace

the questionmark character with a calculated hash code. This simple mechanism allows Roo to easily

round trip JSPX files without interfering with manual changes performed by the user. It represents a

significant enhancement from Roo 1.0 where a file was entirely user managed or entirely Roo managed.

Roo will order fields used in forms in the same sequence they appear in the domain object. The user can

freely change the sequence of form elements without interfering with Roo's round tripping approach

(Roo will honour user chosen element sequences as long as it can detect individual elements by their

id).

The user can nest Roo managed elements in in any structure he wishes without interfering with Roo

jspx round tripping. For example elements can be enclosed by HTML div or span tags to change visual

or structural appearance of a page.

Most default tags installed by Roo have a render attribute which is of boolean type. This allows users

to completely disable the rendering of a given tag (and potential sub tags). This is useful in cases where

you don't wish individual fields in a form to be presented to the user but rather have them autopopulated

through other means (i.e. input type="hidden"). The value of the render attribute can also be calculated

dynamically through the Spring Expression Language (SpEL) or normal JSP expression language. The

generated create.jspx in Roo application demonstrates this.

Scaffolding of JPA reference relationships

The Roo JSP addon will read JSR 303 (bean validation API) annotations found in a form-backing

object. The following convention is applied for the generation of create and update (and finder) forms:

Web MVC Add-On

1.3.0.RELEASE 90

Data type / JPA annotation Scaffolded HTML Element

String (sizeMax < 30; @Size) Input

String (sizeMax >=30, @Size) Textarea

Number (@Min, @Max, @DecimalMin &

@DecimalMax are recognized)

Input

Boolean Checkbox

Date / Calendar (@Future & @Past are recognized)

(Spring's @DateTimeFormat in combination with the

style or pattern attributes is recognized)

Input (with JS Date chooser)

Enum / @Enumerated Select

@OneToOne Select

@ManyToMany Select (multi-select)

@ManyToOne Select

@OneToMany * Nothing: A message is displayed explaining that this

relationship is managed from the many-side

* As mentioned above, Roo does not scaffold a HTML form element for the 'one' side of a

@OneToMany relationship. To make this relationship work, you need to provide a @ManyToOne

annotated field on the opposite side:

field set --fieldName students --type com.foo.domain.Person --class com.foo.domain.School --cardinality ONE_TO_MANY

field reference --fieldName school --type com.foo.domain.School --class com.foo.domain.Person --cardinality MANY_TO_ONE

In case a field is annotated with @Pattern, the regular expression is passed on to the tag library where

it may be applied through the use of the JS framework of choice.

Automatic Scaffolding of dynamic finders

Roo will attempt to scaffold Spring MVC JSP views for all dynamic finders registered in the form

backing object. This is done by using the web mvc finder all or web mvc finder add command.

Due to file name length restrictions by many file systems (see http://en.wikipedia.org/wiki/

Comparison_of_file_systems) Roo can only generate JSP views for finders which have 244 characters

or less (including folders). If the finder name is longer than 244 characters Roo will silently skip the

generation of jsp view artifacts for the dynamic finder in question). More detail can be found in ticket

ROO-1027.

http://en.wikipedia.org/wiki/Comparison_of_file_systems
http://en.wikipedia.org/wiki/Comparison_of_file_systems
https://jira.springsource.org/browse/ROO-1027

1.3.0.RELEASE 91

Chapter 12. JavaServer Faces (JSF) Add-On

The JSF add-on allows you to conveniently scaffold JSF managed beans and XHTML views for an

existing domain model. Currently this domain model is derived from the Roo supported JPA integration

through the entity jpa and related field commands. The following features are included:

• Automatic update of JSF managed beans and converters reflecting changes in the domain model

• Choice of either Oracle Mojarra or Apache MyFaces JSF 2 implementations

• Server-side validation based on JSR 303 constraints defined in the domain layer

• Integration of PrimeFaces JSF Component Suite, including automatic scaffolding of PrimeFaces

controls such as:

• AutoComplete

• Calendar

• FileUpload

• InputText

• InputTextarea

• Media

• SelectManyMenu

• Spinner

• User-selectable PrimeFaces themes

12.1. JSF commands

The JSF add-on contains four commands:

1. roo> web jsf setup --implementation --library --theme

When this command is run for the first time in a single-module project or an empty module, the

necessary JSF artifacts are copied to the project or module such as the pom dependencies and

repositories and the web.xml file. A default PrimeFaces theme called "south-street" is configured

as well in the web.xml.

The web jsf setup command can be run as many times as you like to change the JSF implementation

and the theme.

The --implementation option when specifed allows you to chouse either the Oracle Mojarra or

Apache MyFaces JSF implementations.

The --library option has only one selectable value, being PRIMEFACES.

The --theme option lets you select one of 30 PrimeFaces themes for your UI.

http://primefaces.org/

JavaServer Faces (JSF) Add-On

1.3.0.RELEASE 92

2. roo> web jsf all --package

The web jsf all command creates JSF managed beans and converters for all entities in the specified

package. A JSF XHTML page is also created in the src/main/webapp/pages directory for each entity.

3. roo> web jsf scaffold --class --entity --beanName --includeOnMenu

The web jsf scaffold command lets you create a managed bean for a particular entity in your project.

The --class option is where you specify the name of the managed bean class.

The --entity option lets you specify the entity for the managed bean and is only required if the focus

is not on the entity you want to create the managed bean for.

If you do not wish the 'create' and 'list' menu selections to appear for the entity in the menu on the

generated UI, specify false in the --includeOnMenu option.

4. roo> web jsf media --url --player

The web jsf media command is used for embedding multimedia content such as videos and music

on your JSF home page.

The --url option is where you specify the url of the the media content, such as a YouTube video.

The media player used is automaticallly selected based on the url or file extension of the media file

in the url if applicable, however, where this cannot be determined you can use the --player option

to select a suitable player.

12.2. The @RooJsfManagedBean annotation

The @RooJsfManagedBean annotation is added to all new classes created by the web jsf all and web

jsf scaffold commands. The annotation causes the introduction of the javax.faces.bean.ManagedBean

and javax.faces.bean.SessionScoped annotations in the *_Roo_ManagedBean.aj ITD. Note that if you

specify a scope other than @SessionScoped in the managed bean .java file, the scope annotation is

removed from the ITD. For example, if you want your bean to be @RequestScoped, simply annotate

your managed bean with the @RequestScoped annotation.

Use the beanName attribute to force the naming of the managed bean referred to by other beans and

in XHTML pages.

As mentioned before, the includeOnMenu attribute when set to false prevents the 'Create' and 'List all'

menu selections for the entity from showing in the UI's menu.

12.3. The @RooJsfConverter annotation

When a new managed bean is created, a converter class is also created containing the

@RooJsfConverter annotation. The JSF converter class implements the javax.faces.convert.Converter

interface and has implementations of the getAsObject and getAsString methods (introduced in an ITD)

to perform Object-to-String and String-to-Object conversions between model data objects and a String

representation of those objects that is suitable for rendering.

JavaServer Faces (JSF) Add-On

1.3.0.RELEASE 93

12.4. The @RooJsfApplicationBean annotation

Whenever a managed bean is created for the first time, Roo will install a class containing

the @RooJsfApplicationBean annotation. The ITD generated from this annotation contains the

PrimeFaces menu with the 'Create' and 'List all' operations for each entity. Whenever a managed bean is

created, provding the @RooJsfManagedBean includeOnMenu attribute is either not specifed or set to

'true', new menu selections are automatically added to the *__Roo_ApplicationBean.aj ITD. Similarly,

when a managaed bean is deleted or the includeOnMenu attribute is set to false, the menu selections

are removed.

12.5. The bikeshop example

The Roo distribution contains a script called bikeshop.roo that demonstrates the JSF add-on capability.

Please note that the --equals attribute should be specified as true on the entity jpa command for all

entities intended to be scaffolded with JSF. Alternatively, add the @RooEquals annotation to existing

entities.

In the Roo shell, type:

roo> script bikeshop.roo

When complete, exit the shell and run Jetty as follows:

mvn jetty:run-exploded

View the application at http://localhost:8080/bikeshop:

1.3.0.RELEASE 94

Chapter 13. Cloud Foundry Add-On

VMware Cloud Foundry is a recently-released platform as a service (PaaS) offering for developers on

many popular programming languages, including Java.

Spring Roo provides comprehensive integration with Cloud Foundry. With Roo you can easily login

to Cloud Foundry, view your applications, bind to services, deploy applications and gather statistics.

In fact there are more than 30 unique Cloud Foundry commands added to the Spring Roo shell to help

you explore and benefit from Cloud Foundry.

13.1. Installing the Cloud Foundry Add-On

The Cloud Foundry add-on provides the mechanism through which Cloud Foundry features are

available in Spring Roo. To install this add-on, you simply load Spring Roo 1.1.3 and type (most of

which can be completed using the TAB key, or CTRL + SPACE if using STS):

pgp automatic trust

addon install bundle --bundleSymbolicName org.springframework.roo.addon.cloud.foundry

The “pgp” command simply ensures the signed bundles needed by the Cloud Foundry add-on can

be installed. The “addon install” command instructs Roo to download and install the Cloud Foundry

support. The add-on is successfully installed once you see the “Successfully installed add-on: Spring

Roo - Addon - Cloud Foundry [version: a.b.c.d]” message on your screen.

As with all Roo add-ons, you could also install the Cloud Foundry add-on by simply attempting to

use it. To follow this alternate installation path, enter the “pgp automatic trust” command, then “cloud

foundry” and press enter. A list of matching add-ons will be displayed. You’ll probably want to install

the first (and currently only match), so use the “addon install id --searchResultId 1” command.

Alternatively you can just executing the following command which will prompt you to install the Cloud

Foundry add-on, it is still required that you enable automatic trust prior to installation.

pgp automatic trust

cloud foundry login

www.cloudfoundry.org

Cloud Foundry Add-On

1.3.0.RELEASE 95

13.2. Getting Started

The integration of Cloud Foundry into Roo has added a lot of new functionality and commands to the

Roo shell, in this chapter we will explore these new commands and deploy a sample application to

the cloud. After installing the Cloud Foundry add-on you will first need to login. To do this, use the

following command:

13.2.1. Logging In

cloud foundry login

This command takes in three options: email, password, and cloudControllerUrl. The

cloudControllerUrl is optional, but the when logging into Cloud Foundry for the first login the email

and password are mandatory. You aren't required to enter the email and password everytime you login,

Roo will store these locally for you. The cloudControllerUrl defaults the Cloud service provided by

VMware, api.cloudfoundry.com, but can be changed to point to private Cloud Foundry instances.

13.2.2. The Commands

After logging in a many new Cloud Foundry comands will be presented to you. You can see these by

typing "cloud foundry" in the shell and then pressing TAB.

Cloud Foundry Add-On

1.3.0.RELEASE 96

13.2.3. Deploying Your Application

As the creation of sample application that will be used in this chapter has already been covered in the

GWT chapter we will skip to the deploying it.

The first command that is likely to be of use is "cloud foundry deploy". With this command you

are are able to deploy an application to Cloud Foundry. The deploy command has a number of

options: appName (mandatory), path (mandatory), urls, instances, and memory. Roo will automatically

present you with existing deployed applications to enable you to choose a unique name, and will also

present any WARs found in the project. If a WAR isn't found the "CREATE" option presented. By

selecting create you will trigger a Maven package, which will create a deployable application. Onece

the application has been successfully deployed when you see "The application 'new-expenses' was

successfully pushed".

Cloud Foundry Add-On

1.3.0.RELEASE 97

13.2.4. Viewing Your Applications

After running the above command, and assuming that you had created a project in the first place your

application will be deployed to Cloud Foundry. To verify this you can run the command "cloud foundry

list apps", which will display all applications currently deployed.

There are two other application deployed, both of which are started and bound to services. You will

also notice that a URL has been mapped to the each application and that the application that was just

deployed "new-expenses" is currently stopped and no services have been bound to it. The URL has

been created and mapped based on the application name, which is what Roo defaults to if a URL is

not provided.

13.2.5. Binding Services

Cloud Foundry Add-On

1.3.0.RELEASE 98

The next step is to bind the application "new-expenses" to a service, before we do this though we need to

check that we have a service to bind to. To this we use the "cloud foundry list services" command which

will display a list of possible services we can create instances of and currently provisioned services.

As can be seen above Cloud Foundry currently provides 4 services: Redis, MongoDB, RabbitMQ, and

MySQL. There is currently one provisioned service, that is an instance of MySQL called "misql". As

there is already a MySQL service present we are going to bind this to our "new-expenses" application.

To bind "new-expenses" to a service we use the "cloud foundry bind service --serviceName misql --

appName new-expenses" command. Roo's auto-completion makes navigating the options a breeze.

If you were to run "cloud foundry list apps" at this point you would see that the application "new-

expenses" is now bound to the MySQL service instance "misql". We should now be ready to start the

application, but before we do lets take a look at how much memory has been assigned to the application.

To do this we run "cloud foundry view app memory". When we first deployed the application no

memory value was specified so, as you can see below, the default value provisioned is 256 megabytes.

Cloud Foundry Add-On

1.3.0.RELEASE 99

13.2.6. Provisioning Memory

To change the alotted memory we could run "cloud foundry update app memory --appName new-

expenses" but as GWT allows state to be stored client side the default should be enough.

13.2.7. Starting Your Application

Now that we have verified that we should have enough memory to start we simple run "cloud foundry

start app --appName new-expenses".

To verify that the application has actually started simply navigate to the URL you previously mapped

to the application, in this case it is "new-expenses.cloudfoundry.com", and you should see your

application.

Cloud Foundry Add-On

1.3.0.RELEASE 100

13.3. Conclusion

Cloud Foundry is a ground breaking service and open source platform that allows developers to

maximise there productivity by not having to manage the platform to which they deploy. The initial

integration with Roo allows developers to deploy and manage their applications with very little effort

from with in the shell. In this chapter we have installed the Cloud Foundry Add-On in Roo which

enabled applications to be deployed to and managed on Cloud Foundry. We have shown how easy

Cloud Foundry makes it for the developer to take advantage of the cloud from with Roo, by going the

deployment process step-by-step. There are other commands that haven't been explicity covered by

this guide and may be expanded on in the future.

1.3.0.RELEASE 101

Chapter 14. Google Web Toolkit Add-On

Google Web Toolkit (GWT) is a technolgy developed by Google to allow the use of existing Java

knowledge and tools to build high performance, desktop-esk web applications. Whilst GWT abstracts

away many complexities of web application development by not requiring you to learn Javascript and

HTML nor worry about browser quirks and memory leaks there is still a start-up cost associated
with GWT and the combination of Roo and GWT doesn’t absolve you completely from getting your

hands a little dirty. This chapter aims to explain how Roo can reduce the time cost involved with

getting started with GWT and does not attempt to provide a complete guide on GWT or its use. The

GWT team has written excellent documentation to help you in understanding and using GWT in your

project, the GWT documentation is especially useful when it comes to customising your application.

The GWT add-on enables you to create a complete web application for your domain model with a

single command. Once enabled, the GWT add-on will maintain your application to ensure it reflects

changes to the domain model. Currently the add-on only has a single command, which can be used to

setup GWT in any Roo project. As such, Beginning With Roo: The Tutorial can be leveraged when

starting out with Roo and GWT.

The first iteration of the add-on allowed you to generate a fully fledged GWT web application in

under a minute via the expenses script (to run the expenses script just execute the command script
expenses.roo from the Roo shell). The resulting application incorporated several hot new features

found in GWT 2.1, these include:

• the new lightweight RequestFactory infrastructure for client-server communication;

• the built-in best practice MVP (Model View Presenter) framework;

• ultra efficient new data presentation widgets; and,

• data-binding support.

In Roo 1.1.1 we have built upon this by:

• making the add-on more Roo-like, via a faux-ITD model;

• incorporating all the improvements and fixes found in GWT 2.1.1, such as support for inheritance

in proxied entities; and,

• ensuring that user customisation remains intact upon each launch of Roo.

This chapter will outline each of these improvements in more detail.

14.1. GWT Add-On Commands

The main GWT add-on commands are as follows:

• web gwt setup - turn an existing Roo project it a GWT web application.

• web gwt all - create GWT request and proxy classes for all domain types in your project

If your project has a domain model, which is currently represented by Roo’s JPA support via the

entity and related field commands, additional views will be created to mirror entities in the domain.

http://code.google.com/webtoolkit/doc/latest/DevGuide.html
http://code.google.com/webtoolkit/doc/latest/DevGuideRequestFactory.html
http://code.google.com/webtoolkit/doc/latest/DevGuideMvpActivitiesAndPlaces.html
http://code.google.com/webtoolkit/doc/latest/DevGuideUiCellWidgets.html
http://code.google.com/webtoolkit/doc/latest/DevGuideUiEditors.html

Google Web Toolkit Add-On

1.3.0.RELEASE 102

(A full run down of how to implement your domain model via the Roo shell can be found in section

2.5 of Beginning With Roo: The Tutorial)

• web gwt gae update - to be run when the database is changed to Google App Engine from an SQL

database or back again

To demostrate the basic structure of the conjured GWT application a new Roo project, with a very

basic domain model, will be created using the following commands:

project --topLevelPackage com.springsource.roo.zoo

jpa setup --provider HIBERNATE --database HYPERSONIC_IN_MEMORY

enum type --class ~.shared.domain.Species

enum constant --name Fish

enum constant --name Bird

enum constant --name Mammal

enum constant --name Reptile

enum constant --name Amphibian

entity jpa --class ~.server.domain.Animal

field string --fieldName name --notNull

field enum --fieldName species --type ~.shared.domain.Species

This will create project with a layout as presented in Figure GWT.1.

Figure 14.1. Figure GWT.1: Basic Roo project

Upon running the gwt setup command, regardless of the presence of a domain model, a number of static

scaffold files will be copied into your project. Figure GWT.2 displays the new files and directories

(highlighted).

Google Web Toolkit Add-On

1.3.0.RELEASE 103

Figure 14.2. Figure GWT.2: New packages and files created from running “gwt setup”

Most of the interesting stuff happens in the client package so we will concentrate on its sub-packages

and files. The two sub-packages of interest are:

• managed

• this package contains all the files that are maintained by Roo. These are files that are created and

updated to reflect changes in the domain model. The GWT add-on enforces a number of rules

that mean that the add-on will not touch source. As GWT doesn’t currently support AspectJ the

standard definition of what constitutes source is different than in other add-ons, such as the entity

add-on. This will be expanded upon in the section ITDs: GWT Style below.

• scaffold

• this package contains static files that provide a framework for the other parts of the application.

The files in this package are never updated or changed, they are copied to the Roo project upon

running the gwt setup command.

After initial setup all the action occurs in the managed package. The managed package is comprised of:

• activity

• contains all classes that leverage the Activity infrastructure which is part of the new MVP

framework in GWT. These files are changed as new entities are added or removed from the

domain model.

Google Web Toolkit Add-On

1.3.0.RELEASE 104

• request

• contains all classes that revolve around the use of RequestFactory. For each entity in the domain

model a *Proxy and *Request class is created as highlighted in Figure GWT.3. More information

can be found on RequestFactory via the GWT documentation, a basic synopsis is: a *Proxy class

represents a server-side entity and a *Request class represents a server-side service.

Figure 14.3. Figure GWT.3: *Proxy and *Request classes

• ui

• contains all the managed view and ui related classes and files. When an entity is added to the

domain model 8 view sets are created (a set generally includes a concrete-abstract type pair and

a ui.xml file, an example of two file sets appear in Figure GWT.4) and a ProxyRenderer class.

The file sets are as follows:

1. *DetailsView

2. *EditView

3. *ListEditor

4. *ListView

5. *MobileDetailsView

6. *MobileEditView

7. *MobileListView

8. *SetEditor

Figure 14.4. Figure GWT.4: *View classes and *.ui.xml files

Google Web Toolkit Add-On

1.3.0.RELEASE 105

14.2. Running and Compiling

A GWT application can be run in two ways it can be run via Development Mode or once compiled to

JavaScript from a standard application server such as Jetty.

Development Mode

Development mode allows you to make changes to your application without having to recompile to

JavaScript, a time consuming operation, it also lets you to debug your application as if it were a standard

Java application. More can be found on Development Mode via the GWT team’s documentation here.

To run the application in Development Mode from the command line execute the Maven goal mvn
gwt:run, this will open the Development Mode console where you can launch the application by

clicking “Launch Default Browser”.

Development Mode requires that you are using a browser that supports the Development Mode plug-

in, you should be prompted to install the plug-in upon first launch of the application if the browser that

doesn’t currently have the plug-in installed. Alternatively you can check to see whether your browser

is supported and download the plug-in from here.

Jetty

To compile the application to JavaScript and run it in Jetty execute the Maven goal mvn jetty:run-
exploded from the command line. For larger applications compilation can take some time, so running

the application outside of Development Mode is often not practical but can be beneficial when wanting

to test the speed and size of the compiled application or to run the application in browsers that are not

currently supported by the Development Mode plug-in.

http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://gwt.google.com/missing-plugin/

Google Web Toolkit Add-On

1.3.0.RELEASE 106

14.3. Desktop and Mobile Views

The application created via GWT add-on comes in two flavours: Desktop and Mobile. The default view

depends on the device accessing the application. If you are viewing the application from a desktop

browser then the following Desktop view would be displayed:

If you are viewing the application from a smartphone such as an Android device or an iPhone the

following Mobile views would be displayed:

Google Web Toolkit Add-On

1.3.0.RELEASE 107

To force the desktop browser to display the Mobile view instead of the Desktop the “m=true” query

string needs to be added to the URL used to access the application. For example to access the Mobile

view from a desktop browser whilst using Development Mode the URL would be:

http://127.0.0.1:8888/ApplicationScaffold.html?gwt.codesvr=127.0.0.1:9997&m=true

14.4. ITDs: GWT Style

One of the critical technologies that underpin Roo is AspectJ with Roo relying heavily on its inter-type

declaration (ITD) features. GWT doesn’t currently support ITDs, but will in the future (please vote

here to register your support), due to this a different approach had to be created which mimics how

ITDs works albeit with an impact on class hierarchy. To achieve the same end as ITDs an abstract-

concrete model has been introduced in Roo 1.1.1, this replicates how ITDs are used within Roo and

provides clear separation between Roo and end-user modifications.

To demonstrate the changes a view class that is created, as part of running the expenses script, will

be examined, EmployeedMobileEditView.java. Prior to 1.1.1, only Roo managed source files were

created, so upon running expenses.roo a singular EmployeedMobileEditView.java was created. Any

changes that Roo needed to make to this file as result of modifying the server-side Employee entity

would cause user made changes to be overwritten.

As of Roo 1.1.1 two class files are created for each class that Roo may

need to manage as a result of changes to entities. In addition to the singular

EmployeedMobileEditView.java a EmployeedMobileEditView_Roo_Gwt.java file is also created

from which EmployeedMobileEditView extends. All changes that Roo needs to make to will occur

ONLY in EmployeedMobileEditView_Roo_Gwt and the end-user has the ability to leverage the Roo

managed code or override it.

Following Roo convention a managed abstract class from which a concrete class extends is suffixed

with “_Roo_Gwt”, a warning is also placed at the top of the source file. If a class is not referenced

by another type only a warning is placed at the top of the source file. These naming conventions and

warnings serve to highlight that this file is “owned” by Roo and a user shouldn’t make changes to

the file.

14.5. UiBinder ui.xml Files

In addition to Roo respecting user modifications to GWT client-side types changes made to UiBinder

xml files are also preserved. The current implementation is fairly basic and round-tripping support will

be added in a future release.

The management of ui.xml file works in the following way:

1. Roo looks for an element that has an “id=boundElementHolder” attribute, if a

“boundElementHolder” element is not found Roo leaves the file.

2. If a “boundElementHolder” element is found each element contained within the

“boundElementHolder” element is examined to see if there is an element which has an id attribute

which corresponds to each bound field declared in the bound type. If an element is not found it is

added based upon what has been specified as part of the original scaffolded application.

Google Web Toolkit Add-On

1.3.0.RELEASE 108

• To stop the add-on recreating a field just create an invisible element with an id attribute equal

to the field not be displayed. For example if the field “supervisor” wasn’t to be displayed the

declared element in “boundElementHolder” would need to be replaced by <div id=”supervisor”

style=”display:none”/>. Alternatively a adding “display:none” to the standard declared element’s

style attribute can just be added.

Roo will re-order elements based on the order found in the underlying entity.

14.6. Expected GWT Add-On Behaviour

Prior to Roo 1.1.1 the behaviour of the GWT add-on was largely undefined, the following clarifies

what can be expected of the add-on in Roo 1.1.1.

• The add-on will only make changes to the abstract class, never the concrete type. NEVER.

• Roo managed files are suffixed with _Roo_Gwt and have a warning comment in the first line

notifying the user should not edit the file.

• When a user adds/deletes/edits a field in a monitored Entity the addon will make appropriate changes

in the mirrored types abstract classes.

• When an entity is deleted, or the @RooJpaActiveRecord annotation is removed, the mirrored types

will remain in play as to remain consistent with not touch user source.

• Roo non-destructively manages a UiBinder xml file, thought formatting is lost in the process.

14.7. Migrating a Roo GWT project (1.1 -> 1.1.1+)

Unfortunately a number of breaking API changes in GWT happened with the release of GWT 2.1.1.

Like any application built against an external library, you will need to refactor your application to deal

with these changes.

The transition to the new abstract-concrete model and its associated benefits is not automatic. To take

advantage of the new abstract-concrete model used by the GWT add-on, you will need to inherit from

the respective *_Roo_Gwt files and optionally remove the methods in the concrete type that have been

declared in the *_Roo_Gwt file.

14.8. Troubleshooting

Known GWT Issues

Whilst a number of issues have been resolved in GWT 2.1.1, there are still a few problems you will

most likely come across:

• RequestFactory doesn't support is*()/had*() methods for primitive booleans and EditorModel

doesn't realise that primitive types are now supported in Proxies, which means that primitives are

still not supported in the GWT add-on.

• “mvn clean gwt:compile” doesn’t work and a “mvn clean compile gwt:compile” needs to be used.

Google Web Toolkit Add-On

1.3.0.RELEASE 109

• The “Deprecated use of id="boundElementHolder"” warning will be removed when round-tripping

support is added.

1.3.0.RELEASE 110

Chapter 15. JSON Add-On

There are a number of ways to work with JSON document serialization and desrialization in

Roo projects:

Option 1: Built-in JSON handling managed in domain layer (discussed in this section)

• This offers customizable FlexJson integration

Option 2: Spring MVC detects the Jackson library in the application classpath

• simply use Spring's @RequestBody and @ResponseBody annotations in the controllers, or

• take advantage of Spring's ContentNegotiatingViewResolver

The JSON add-on offers JSON support in the domain layer as well as the Spring MVC scaffolding. A

number of methods are provided to facilitate serialization and deserialization of JSON documents into

domain objects. The JSON add-on makes use of the Flexjson library.

15.1. Adding JSON Functionality to Domain Types

The add-on offers an annotation as well as two commands that support the integration of JSON support

into the project's domain layer:

1. Annotating a target type with the default @RooJson annotation will prompt Roo to create an ITD

with the following four methods:

public String toJson() {

 return new JSONSerializer().exclude("*.class").serialize(this);

}

This method returns a JSON representation of the current object.

public static Owner fromJsonToOwner(String json) {

 return new JSONDeserializer<Owner>().use(null, Owner.class).deserialize(json);

}

This method has a String parameter representing the JSON document and returns a domain type

instance if the document can be serialized by the underlying deserializer.

public static String toJsonArray(Collection<Owner> collection) {

 return new JSONSerializer().exclude("*.class").serialize(collection);

}

This method will convert a collection of the target type, provided as method parameter, into a valid

JSON document containing an array.

public static Collection<Owner> fromJsonArrayToOwners(String json) {

 return new JSONDeserializer<List<Owner>>().use(null,

 ArrayList.class).use("values", Owner.class).deserialize(json);

}

This method will convert a JSON array document, passed in as a method parameter, into a collection

of the target type.

http://flexjson.sourceforge.net/
http://jackson.codehaus.org/
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestbody
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-responsebody
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-multiple-representations
http://flexjson.sourceforge.net/

JSON Add-On

1.3.0.RELEASE 111

The @RooJson annotation can be used to customize the names of the methods being introduced

to the target type. Furthermore, you can disable the creation of any of the above listed methods

by providing an empty String argument for the unwanted method in the @RooJson annotation.

Example:

@RooJson(toJsonMethod="", fromJsonMethod="myOwnMethodName")

2. The json add Roo shell command will introduce the @RooJson annotation into the specified target

type.

3. The json all command will detect all domain entities in the project and annotate all of them with

the @RooJson annotation.

15.2. JSON REST Interface in Spring MVC controllers

Once your domain types are annotated with the @RooJson annotation, you can create Spring MVC

scaffolding for your JSON enabled types.

1. The web mvc json setup Roo shell command configures the current project to support JSON

integration using Spring MVC.

2. The web mvc json add Roo shell command introduces the @RooWebJson annotation into the

specified target type.

3. The web mvc json all Roo shell command finds all JSON-enabled types (@RooJson) in the project

and creates Spring MVC controllers for each (if a controller does not already exist), or adds

@RooWebJson to existing controllers (should they already exist).

4. Annotating an existing Spring MVC controller with the @RooWebJson annotation will prompt Roo

to create an ITD with a number of methods:

• listJson

@RequestMapping(headers = "Accept=application/json")

@ResponseBody

public ResponseEntity<String> ToppingController.listJson() {

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json; charset=utf-8");

 List<Topping> result = toppingService.findAllToppings();

 return new ResponseEntity<String>(Topping.toJsonArray(result), headers, HttpStatus.OK);

}

As you can see this method takes advantage of Spring's request mappings and will respond

to HTTP GET requests that contain an 'Accept=application/json' header. The @ResponseBody

annotation is used to serialize the JSON document.

To test the functionality with curl, you can try out the Roo "pizza shop" sample script (run roo>

script pizzashop.roo; then quit the Roo shell and start Tomcat 'mvn tomcat:run'):

curl -i -H "Accept: application/json" http://localhost:8080/pizzashop/toppings

• showJson

@RequestMapping(value = "/{id}", headers = "Accept=application/json")

JSON Add-On

1.3.0.RELEASE 112

@ResponseBody

public ResponseEntity<String> ToppingController.showJson(@PathVariable("id") Long id) {

 Topping topping = toppingService.findTopping(id);

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json; charset=utf-8");

 if (topping == null) {

 return new ResponseEntity<String>(headers, HttpStatus.NOT_FOUND);

 }

 return new ResponseEntity<String>(topping.toJson(), headers, HttpStatus.OK);

}

This method accepts an HTTP GET request with a @PathVariable for the requested Topping

ID. The entity is serialized and returned as a JSON document if found, otherwise an HTTP 404

(NOT FOUND) status code is returned. The accompanying curl command is as follows:

curl -i -H "Accept: application/json" http://localhost:8080/pizzashop/toppings/1

• createFromJson

@RequestMapping(method = RequestMethod.POST, headers = "Accept=application/json")

public ResponseEntity<String> ToppingController.createFromJson(@RequestBody String json) {

 Topping topping = Topping.fromJsonToTopping(json);

 toppingService.saveTopping(topping);

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json");

 return new ResponseEntity<String>(headers, HttpStatus.CREATED);

}

This method accepts a JSON document sent via HTTP POST, converts it into a Topping instance,

persists that new instance, and returns an HTTP 201 (CREATED) status code. The accompanying

curl command is as follows:

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json"

 -d '{"name": "Thin Crust"}' http://localhost:8080/pizzashop/bases

• createFromJsonArray

@RequestMapping(value = "/jsonArray", method = RequestMethod.POST, headers = "Accept=application/json")

public ResponseEntity<String> ToppingController.createFromJsonArray(@RequestBody String json) {

 for (Topping topping: Topping.fromJsonArrayToToppings(json)) {

 toppingService.saveTopping(topping);

 }

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json");

 return new ResponseEntity<String>(headers, HttpStatus.CREATED);

}

This method accepts a document containing a JSON array sent via HTTP POST and converts the

array into instances that are then persisted. The method returns an HTTP 201 (CREATED) status

code. The accompanying curl command is as follows:

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json"

 -d '[{"name":"Cheesy Crust"},{"name":"Thick Crust"}]'

 http://localhost:8080/pizzashop/bases/jsonArray

• updateFromJson

@RequestMapping(method = RequestMethod.PUT, headers = "Accept=application/json")

public ResponseEntity<String> ToppingController.updateFromJson(@RequestBody String json) {

 HttpHeaders headers = new HttpHeaders();

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestparam

JSON Add-On

1.3.0.RELEASE 113

 headers.add("Content-Type", "application/json");

 Topping topping = Topping.fromJsonToTopping(json);

 if (toppingService.updateTopping(topping) == null) {

 return new ResponseEntity<String>(headers, HttpStatus.NOT_FOUND);

 }

 return new ResponseEntity<String>(headers, HttpStatus.OK);

}

This method accepts a JSON document sent via HTTP PUT and converts it into a Topping

instance before attempting to merge it with an existing record. If no existing record is found, an

HTTP 404 (NOT FOUND) status code is sent to the client, otherwise an HTTP 200 (OK) status

code is sent. The accompanying curl command is as follows:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json"

 -d '{id:6,name:"Mozzarella",version:1}'

 http://localhost:8080/pizzashop/toppings

• updateFromJsonArray

@RequestMapping(value = "/jsonArray", method = RequestMethod.PUT,

 headers = "Accept=application/json")

public ResponseEntity<String> BaseController.updateFromJsonArray(@RequestBody String json) {

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json");

 for (Base base: Base.fromJsonArrayToBases(json)) {

 if (baseService.updateBase(base) == null) {

 return new ResponseEntity<String>(headers, HttpStatus.NOT_FOUND);

 }

 }

 return new ResponseEntity<String>(headers, HttpStatus.OK);

}

This method accepts a document containing a JSON array sent via HTTP PUT and converts

the array into transient entities which are then merged. The method returns an HTTP 404 (NOT

FOUND) status code if any of the instances to be updated are not found, otherwise it returns an

HTTP 200 (OK) status code. The accompanying curl command is as follows:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json"

 -d '[{id:1,"name":"Cheesy Crust",version:0},{id:2,"name":"Thick Crust",version:0}]'

 http://localhost:8080/pizzashop/bases/jsonArray

• deleteFromJson

@RequestMapping(value = "/{id}", method = RequestMethod.DELETE, headers = "Accept=application/json")

public ResponseEntity<String> ToppingController.deleteFromJson(@PathVariable("id") Long id) {

 Topping topping = toppingService.findTopping(id);

 HttpHeaders headers = new HttpHeaders();

 headers.add("Content-Type", "application/json");

 if (topping == null) {

 return new ResponseEntity<String>(headers, HttpStatus.NOT_FOUND);

 }

 toppingService.deleteTopping(topping);

 return new ResponseEntity<String>(headers, HttpStatus.OK);

}

This method accepts an HTTP DELETE request with an @PathVariable identifying the Topping

instance to be deleted. HTTP status code 200 (OK) is returned if a Topping with that ID was

found, otherwise HTTP status code 404 (NOT FOUND) is returned. The accompanying curl

command is as follows:

JSON Add-On

1.3.0.RELEASE 114

curl -i -X DELETE -H "Accept: application/json" http://localhost:8080/pizzashop/toppings/1

• jsonFind...

[Optional] Roo will also generate a method to retrieve a document containing a JSON array if

the form backing object defines dynamic finders. Here is an example taken from VisitController

in the pet clinic sample application, after adding JSON support to it:

@RequestMapping(params = "find=ByDescriptionAndVisitDate", method = RequestMethod.GET,

 headers = "Accept=application/json")

public String jsonFindVisitsByDescriptionAndVisitDate(@RequestParam("description") String desc,

 @RequestParam("visitDate") @DateTimeFormat(style = "M-") Date visitDate, Model model) {

 return Visit.toJsonArray(Visit.findVisitsByDescriptionAndVisitDate(desc, visitDate).getResultList());

}

This method accepts an HTTP GET request with a number of request parameters which define

the finder method as well as the finder method arguments. The accompanying curl command is

as follows:

curl -i -H Accept:application/json

 http://localhost:8080/petclinic/visits?find=ByDescriptionAndVisitDate%26description=test%26visitDate=12/1/10

If you need help configuring how FlexJson serializes or deserializes JSON documents, please refer to

their reference documentation.

http://flexjson.sourceforge.net/

1.3.0.RELEASE 115

Chapter 16. Apache Solr Add-On
The Apache Solr add-on provides integration between the Roo generated domain model and the

Apache Solr search platform. If you haven't heard of the open source Solr system, here's a quick

description from the project web site:

“Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene

project. Its major features include powerful full-text search, hit highlighting, faceted search, dynamic

clustering, database integration, and rich document (e.g., Word, PDF) handling. Solr is highly scalable,

providing distributed search and index replication, and it powers the search and navigation features of

many of the world's largest internet sites.”

“Solr is written in Java and runs as a standalone full-text search server within a servlet container

such as Tomcat. Solr uses the Lucene Java search library at its core for full-text indexing and

search, and has REST-like HTTP/XML and JSON APIs that make it easy to use from virtually

any programming language. Solr's powerful external configuration allows it to be tailored to almost

any type of application without Java coding, and it has an extensive plugin architecture when more

advanced customization is required.”

16.1. Solr Server Installation

The addon requires a running instance of the Apache Solr server. To install a Solr server just follow

these four easy steps:

1. Download the server: http://www.apache.org/dyn/closer.cgi/lucene/solr/

2. Unzip (untar) the download: tar xf apache-solr-1.4.0.tgz

3. Change into the solr example directory: cd apache-solr-1.4.0/example

4. Start the Solr server: java -jar start.jar

5. Verify Solr is running correctly: http://localhost:8983/solr/admin/

16.2. Solr Add-On Commands

Once the server is running you can setup the Solr integration for your project using the following Roo

commands:

1. roo> solr setup

This command installs the SolrJ driver dependency into the project pom.xml and registers your Solr

server in application context so it can be injected whereever you need it in your project.

2. ~.Person roo> solr add

This command allows you to mark an individual entity for automatic Solr indexing. The

@RooSolrSearchable annotation will be added to the target entity (Person). Furthermore, the

following ITD is generated:

privileged aspect Person_Roo_SolrSearch {

 @Autowired

http://lucene.apache.org/solr/
http://www.apache.org/dyn/closer.cgi/lucene/solr/
http://localhost:8983/solr/admin/

Apache Solr Add-On

1.3.0.RELEASE 116

 transient SolrServer Person.solrServer;

 public static QueryResponse Person.search(String queryString) {

 return search(new SolrQuery("person.solrsummary_t:" + queryString.toLowerCase()));

 }

 public static QueryResponse Person.search(SolrQuery query) {

 try {

 QueryResponse rsp = solrServer().query(query);

 return rsp;

 } catch (Exception e) {

 e.printStackTrace();

 }

 return new QueryResponse();

 }

 public static void Person.indexPerson(Person person) {

 List<Person> people = new ArrayList<Person>();

 people.add(person);

 indexPeople(people);

 }

 public static void Person.indexPeople(Collection<Person> people) {

 List<SolrInputDocument> documents = new ArrayList<SolrInputDocument>();

 for (Person person : people) {

 SolrInputDocument sid = new SolrInputDocument();

 sid.addField("id", "person." + person.getId());

 sid.addField("person.birthday_dt", person.getBirthDay());

 sid.addField("person.id_l", person.getId());

 sid.addField("person.name_s", person.getName());

 //add summary field to allow searching documents for objects of this type

 sid.addField("person.solrsummary_t", new StringBuilder().append(

 person.getBirthDay()).append(" ").append(

 person.getId()).append(" ").append(person.getName()));

 documents.add(sid);

 }

 try {

 SolrServer solrServer = solrServer();

 solrServer.add(documents);

 solrServer.commit();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public static void Person.deleteIndex(Person person) {

 SolrServer solrServer = solrServer();

 try {

 solrServer.deleteById("person." + person.getId());

 solrServer.commit();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 @PostUpdate

 @PostPersist

 private void Person.postPersistOrUpdate() {

 indexPerson(this);

 }

 @PreRemove

 private void Person.preRemove() {

 deleteIndex(this);

 }

 public static final SolrServer Person.solrServer() {

Apache Solr Add-On

1.3.0.RELEASE 117

 SolrServer _solrServer = new Person().solrServer;

 if (_solrServer == null) throw new IllegalStateException("Entity manager \

 has not been injected (is the Spring Aspects JAR \

 configured as an AJC/AJDT aspects library?)");

 return _solrServer;

 }

}

The ITD introduces two search methods; one for conducting simple searches against Solr documents

for Person, and another one which works with a preconfigured SolrQuery object. The SolrQuery

object allows you to leverage all functionalities of the Solr search server (like faceting, sorting, term

highliting, pagination, etc).

The indexPerson(..) and indexPeople(..) methods allow you to add new person instances or even

collections of persons to the Solr index. The deleteIndex(..) method allows you to remove a person

from the Solr index.

All indexing, and delete operations are executed in s separate thread and will therefore

not impact the performance of your Web application (this is currently achieved through the

SolrSearchAsyncTaskExecutor.aj aspect).

Furthermore, to trigger automatic indexing of new person instances (or updated person instances)

this itd registers the postPersistOrUpdate() method which hooks into the JPA lifecycle through the

JPA @PostUpdate and @PostPersist annotations. Similarly, the preRemove() method hooks in the

JPA lifecylce through the @PreRemove annotation.

3. roo> solr all

This command will mark all entities in the project for automatic Solr indexing. The generated

functionality is the same as shown above.

16.3. The @RooSolrSearchable Annotation

The @RooSolrSearchable annotation allows you to change all method names through their respective

attributes in the annotation. Marking a method name with an empty String will instruct the Roo Solr

add-on to not generate that method (i.e. @RooSolrSearchable(preRemoveMethod="")).

By default all fields in a domain entity are indexed as dynamic fields (defined in the default schema.xml

which Solr ships with). The default format of a field name is as follows:

<simple-entity-name>.<field-name>_<field-type>

person.birthday_dt

This ensures each field is uniquely mapped across your domain model by prepending the entity name

followed by the field name and field type (which is used to trigger the dynamic field mapping). You

can change field names by adding a @Field annotation to a field in the domain object (i.e. Person)

which contains your own field (you need to provide a field definition in the Solr schema for it as well):

@Field("my:field:name:birthday")

@Temporal(TemporalType.TIMESTAMP)

@DateTimeFormat(style = "M-")

private Date birthDay;

Apache Solr Add-On

1.3.0.RELEASE 118

To index existing DB entity tables each entity exposes a convenience method (example for Person

entity):

Person.indexPeople(Person.findAllPeople());

The URL of the solr server location can be changed in the project src/main/resources/META-INF/

spring/solr.properties config file.

Front-end (controller and MVC/JSP views) are currently a work-in-progress. However, the following

Ajax Library offers a neat front-end for those who want to take this a step further: http://github.com/

evolvingweb/ajax-solr It is planned to provide a out of the box integration with the Ajax-Solr front-

end through this addon in the medium term.

http://github.com/evolvingweb/ajax-solr
http://github.com/evolvingweb/ajax-solr

1.3.0.RELEASE 119

Part III. Internals and
Add-On Development

In this part of the guide we reveal how Roo works internally. With this knowledge you'll be well-positioned to

be able to check out the Roo codebase, build a development release, and write add-ons to extend Roo.

You should be familiar with Part I of this reference guide and ideally have used Roo for a period of time to gain

the most value from this part.

1.3.0.RELEASE 120

Chapter 17. Development Processes

In this chapter we'll cover how we develop Roo, and how you can check it out and get involved.

17.1. Guidelines We Follow

Whether you are part of the Roo core development team, you want to contribute patches, or you want

to develop add-ons there are a few guidelines we would like to bring to your attention.

1. Design Goals

• High productivity for Java developers

• Encourage reuse of existing knowledge, skills and experience

• Eliminate barriers to adoption, no runtime component, minimal size, best possible development

experience

• Avoid lock-in

• No runtime component

• Minimal download size

• Best possible development experience

• Embrace the strengths of Java

• Development-time: tooling, popularity, API quality, static typing

• Deploy-time: performance, memory use, footprint

2. Embrace the advantages of AspectJ

• Use AspectJ inter-type declarations (ITDs) for “active” generation

• Active generation automatically maintains output

• Delivers compilation unit separation of concerns

• Easier for users, and easier for us as developers

• Instant IDE support

• Reduce time to market and adoption barriers

• Other good reasons

• Mature, “push in” refactor, compile-time is welcome

3. ITD Model

• Roo owns *_Roo_*.aj files

• Will delete them if necessary

Development Processes

1.3.0.RELEASE 121

• Every ITD-providing add-on registers a 'suffix' (namespace)

• E.g. the 'Entity' add-on provides *_ROO_JPA_ACTIVE_RECORD.aj

• A missing ITD provider causes AJ file removal

• ITDs have proper import management

• So they look and feel normal to developers

• So they 'push-in refactor' in a natural form

4. Usability = Highest Priority

• Interactivity of Roo Shell

• Tab completion, context awareness, command hiding, hint support, etc

• Background monitoring of externally made changes (allows integration with any development

style)

• Background monitoring to avoid crude 'generation' steps

5. Immutability of Metadata Types

• Immutability as a first step to manage concurrency

• String-based keys (start with 'MID:')

• Metadata and keys built on demand only (never persisted)

• Metadata can depend on other metadata

• if 'upstream' metadata changes, 'downstream' metadata is notified

• Some metadata will want to monitor the file system

• Central metadata service available and cache is provided to enhance performance

6. Conventions we follow

• Ensure usability is first-class

• Minimize the JAR footprint that Roo requires

• Relocate runtime needs to sister Spring projects

• Embrace immutability as much as possible

• Maximize performance in generated code

• Minimize memory consumption in generated code

• Use long artifact IDs to facilitate identification

• Don't put into @Roo* what you could calculate

Development Processes

1.3.0.RELEASE 122

• Don't violate generator predictability conventions

17.2. Source Repository

We develop against a public Git repository from which you can anonymously checkout the code:

git clone git://git.springsource.org/roo/roo.git spring-roo

Review source code without Git http://git.springsource.org/roo/roo/trees/master or https://

fisheye.springsource.org/changelog/spring-roo.

Roo itself uses Maven, so it's very easy to build the standard package, install, assembly and site goals.

PGP should be installed, see the 'Setting Up for Development' section below for details.

17.3. Setting Up for Development

We maintain up-to-date documentation in the readme.txt in the root of the checkout location. Please

follow these instructions carefully.

17.4. Submitting Patches

Submitting a patch for a bug, improvement or even a new feature which you always wanted addressed

can be of great help to the Spring Roo project.

To get started, you could build Roo from sources (as described above), and locally start changing

source code as you see fit. Then test your changes and if all works well, you can create a git patch and

attach it to a ticket in our bug tracker. To create a patch with Git you can simply use the following

command in Roo's source code root directory:

<spring-roo>$ git status

<spring-roo>$ git add (files)

<spring-roo>$ git commit -m 'Explain what I changed'

<spring-roo>$ git format-patch origin/master --stdout > ROO-XXXX.patch

The resulting .patch file can then be attached to the ROO-XXXX ticket in our bug tracker.

17.5. Path to Committer Status

Essentially if you submit a patch and we think it is useful to commit to the code base, we will ask

you to complete our contributor agreement. This is just a simple web form that deals with issues like

patents and copyrights. Once this is done, we can apply your patch to the source code repository.

If you're working on a large module that is part of the Roo Git repository, and you have a history of

providing quality patches and "looking after" the code you've previously written, we will likely invite

you to join us as a committer. We have certain commit policies which are more fully detailed in the

readme.txt that is in the root of the checkout location. We have numerous committers external to

VMware, so Roo is very much a welcoming project in terms of committers. We look forward to you

joining us.

http://git.springsource.org/roo/roo/trees/master
https://fisheye.springsource.org/changelog/spring-roo
https://fisheye.springsource.org/changelog/spring-roo

1.3.0.RELEASE 123

Chapter 18. Simple Add-Ons

Pretty Good Privacy in Spring Roo

The introduction of PGP with Spring Roo 1.1 allows the Roo user to indicate exactly which

developers he trusts to sign software that Roo will download and activate in the Roo Shell. Roo

itself is now also PGP signed in every release. To support these capabilities, a new protocol

handler called httppgp:// has been introduced into Roo. This tells Roo that a given HTTP URL

also has a PGP armour detached signature available. By requiring PGP signatures for all add-

ons, we're able to conveniently and safely host all Roo add-ons for the community. It's up to

the user to decide if he trusts a given PGP key, and without trusting that key, Roo will refuse

to even spend time downloading the httppgp:// resource. Roo's approach also means you can

use standalone PGP tools like GnuPG to perform signature-related operations to independently

verify Roo's correct operation.

This chapter will provide an introduction to Spring Roo add-on development. The intention is to

provide a step-by-step guide that walks the developer from zero code to a fully deployed and published

add-on that is immediately available to all Spring Roo users. With the release of Spring Roo 1.1, a new

set of commands is available that are designed to provide a fast introduction to add-on development,

as well as easy access to registered add-ons by Spring Roo 1.1 users.

OSGi in Spring Roo

Spring Roo runs in an OSGi container since version 1.1. This internal change is ideal for Roo’s

add-on model because it allows Roo users to install, uninstall, start, and stop different add-ons

dynamically without restarting the Roo shell. Furthermore, OSGi allows automatic provisioning

of external add-on repositories and provides very good infrastructure for developing modular,

as well as embedded, and service-oriented applications. Under the hood, Spring Roo uses the

Apache Felix OSGi implementation.

A new add-on named 'Add-On Creator' has been developed that facilitates the creation of a new Spring

Roo add-on. Furthermore, it offers out of the box support for the Subversion integration provided by

Google Code as well as zero setup for hosting the add-on in a public Maven repository hosted as part of

a Google Code project. In order to register the add-on with RooBot - a Spring Roo add-on registration

service - the add-on is also required to be OSGi compliant, needs to be signed with PgP keys and the

addon bundle needs to be registered through the httppgp protocol. Add-on developers get all these

features automatically configured if they use the new 'Add-On Creator' feature that ships with Spring

Roo 1.1.

The following sections will present a complete step-by-step guide demonstrating how to bootstrap a

new Spring Roo add-on, publish and release it as your own Google Code project, and register it with

the RooBot service.

18.1. Project Setup

In addition to the general installation steps discussed in the development process chapter (section 4),

you should also follow the following project specific steps:

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/OSGi
http://en.wikipedia.org/wiki/OSGi
http://felix.apache.org/site/index.html
http://subversion.apache.org/
http://code.google.com/
http://code.google.com/
http://en.wikipedia.org/wiki/OSGi

Simple Add-Ons

1.3.0.RELEASE 124

1. Create a new project in Google Code: Sign in with your Google Account and navigate to http://

code.google.com/hosting/createProject where you can create your project:

• Project Name - a meaningful name such as spring-roo-addon-mvc-i18n-french

• Project Summary - a summary of your project such as 'Spring Roo Add-On to provide French

translation for Spring MVC scaffolding'

• Project Description - description that could include a version compatibility matrix for your add-on

• Version control system - Subversion

• Source code license - GNU General Public License v3

• Project Labels - Spring Roo, Java, Add-On

2. By default, SVN hosting in Google Code will give you a trunk, tags, branches and a wiki folder. In

order to host a Maven repository in your Google code project, you should also create a repo folder

as root for the new repository:

$ svn mkdir -m "create maven repository" https://<project-name>.googlecode.com/svn/repo --username <username> --password <password>

3. Check out your newly created project from SVN:

$ svn checkout https://<project-name>.googlecode.com/svn/trunk/ <project-name> --username <username>

4. (optional) Enter your Google Code SVN credentials into your local maven repository settings.xml:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <servers>

 <server>

 <id>Google Code</id>

 <username>myusername</username>

 <password>mypassword</password>

 </server>

 </servers>

</settings>

???
http://code.google.com/hosting/createProject
http://code.google.com/hosting/createProject

Simple Add-Ons

1.3.0.RELEASE 125

18.2. Fast Creation

Roo's Add-On Creator Commands

With release 1.1, Spring Roo offers the following commands to help developers quickly create

new add-ons:

• addon create simple

• What: Command & Operations support

• When: Simple add-ons that want to add dependencies and/or configuration artifacts to a

project

• addon create advanced

• What: Command, Operations & ITD support

• When: Full-fledged add-ons that offer new functionality to project enhancements to existing

Java types in project introduction of new Java types (+ ITDs)

• addon create i18n

• What: Extension to the existing ‘web mvc install language’ command

• When: A new translation is added to the Spring MVC admin UI scaffolding

• addon create wrapper

• What: Wrapping of a Maven artifact with an OSGi compliant manifest

• When: A dependency is needed to complete other functionality offered by a Roo add-on

(for example a JDBC driver for the DBRE add-on)

Once you have installed Java, Maven, PGP, and SVN tools, and have created and checked out your

Google Code project, you can change into the <project-name> directory, which at this stage should

contain only the .svn directory. In the <project-name> directory, you can start the Spring Roo shell

and use one of the new commands for add-on creation:

roo> addon create simple --topLevelPackage com.foo --projectName <project-name>

The addon create simple command will scaffold a number of artefacts:

[1] pom.xml

[2] readme.txt

[3] legal/LICENSE.TXT

[4] src/main/java/com/foo/batch/BatchCommands.java

[5] src/main/java/com/foo/batch/BatchOperations.java

[5] src/main/java/com/foo/batch/BatchOperationsImpl.java

[6] src/main/java/com/foo/batch/BatchPropertyName.java

[7] src/main/assembly/assembly.xml

This newly created add-on project can be imported into the SpringSource Tool Suite via File > Import

> Maven > Existing Maven projects. Let's discuss some of these artefacts in more detail:

Simple Add-Ons

1.3.0.RELEASE 126

1. pom.xml - This is the Maven project configuration. This configuration ships with a number of

preinstalled Maven plugins that facilitate the PGP artefact signing process as well as the project

release process (including tagging etc). It also adds the OSGi and Felix dependencies needed for

the addon to run in the Roo Shell. Furthermore, several commonly used Spring Roo modules

are preinstalled. These modules provide functionalities such as file system monitoring, Roo shell

command registration, etc. More information about these functionalities is provided in the following

sections.

The add-on developer should open up the pom.xml file and modify some project specific references

and documentation (marked in bold font):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<project [...]>

 [...]

 <name>com-foo-batch</name>

 <organization>

 <name>Your project/company name goes here (used in copyright and vendor information in the manifest)</name>

 </organization>

 [...]

 <description>An add-on created by Spring Roo's addon creator feature.</description>

 <url>http://www.some.company</url>

 <properties>

Some of these properties can also be provided when issuing the addon create command.

2. readme.txt - You can provide any setup or installation information about your add-on in this

file. This file is used by other developers who checkout your add-on source code from the SVN

repository.

3. legal/LICENSE.TXT - Copy the appropriate license text for your add-on into this file.

4. src/main/java/com/foo/batch/BatchCommands.java - This is a fully working code example

demonstrating how to register commands offered by your addon into the Spring Roo Shell (more

detailed information in the next section).

5. src/main/java/com/foo/batch/BatchOperations.java & BatchOperationsImpl.java - These

artefacts are used to perform operations triggered by a command (more information in the next

sections).

6. src/main/java/com/foo/batch/BatchPropertyName.java - This type provides a simple example

demonstrating the use of static command completion options for the Spring Roo Shell. An example

of static command completion options are for example the database selection options as part of the

jpa setup command.

7. src/main/assembly/assembly.xml - This artefact defines configurations used for the packaging of

the add-on.

18.3. Shell Interaction

Spring Roo provides an easy way for external add-ons to contribute new commands to the Roo Shell.

Looking at the code extract below, there are really only two artefacts needed in your command type

to register a new command in the Roo Shell; your type needs to implement the CommandMarker
interface, and you need to create a method annotated with @CliCommand. Let us review some details:

[1] @Component

[1] @Service

Simple Add-Ons

1.3.0.RELEASE 127

[2] public class BatchCommands implements CommandMarker {

[3] @Reference private BatchOperations operations;

 @Reference private StaticFieldConverter staticFieldConverter;

[4] protected void activate(ComponentContext context) {

 staticFieldConverter.add(BatchPropertyName.class);

 }

[4] protected void deactivate(ComponentContext context) {

 staticFieldConverter.remove(BatchPropertyName.class);

 }

[5] @CliAvailabilityIndicator("welcome property")

 public boolean isPropertyAvailable() {

 return operations.isProjectAvailable();

 }

[6] @CliCommand(value="welcome property", help="Obtains a pre-defined system property")

[7] public String property(@CliOption(key="name", mandatory=false, specifiedDefaultValue="USERNAME", unspecifiedDefaultValue="USERNAME", help="The property name you'd like to display") BatchPropertyName propertyName) {

 return operations.getProperty(propertyName);

 }

There are a few artefacts of interest when developing Spring Roo add-ons:

1. To register components and services in the Roo shell, the type needs to be annotated with the

@Component & @Service annotations provided by Felix. These components can be injected into

other add-ons (more interesting for functionalities exposed by operations types).

2. The command type needs to implement the CommandMarker interface, which Spring Roo scans

for in order to detect classes that contribute commands to the Roo Shell.

3. The Felix @Reference annotations are used to inject services and components offered by other

Spring Roo core components or even other add-ons. In this example, we are injecting a reference

to the add-on's own BatchOperations interface and the StaticFieldConverter component offered by

the Roo Shell OSGi bundle. The Felix @Reference annotation is similar in purpose to Spring's

@Autowired and @Inject annotations.

4. The activate and deactivate methods can optionally be implemented to get access to the lifecycle

of the addon's bundle as managed by the underlying OSGi container. Roo add-on developers can

use these lifecycle hooks for registration and deregistration of converters (typically in command

types) or for the registration of metadata dependencies (typically in ITD-providing add-ons) or any

other component initialization activities.

5. The optional @CliAvailabilityIndicator annotation allows you to limit when a command is

available in the Spring Roo Shell. Methods thus annotated should return a boolean to indicate

whether a command should be visible to the Roo Shell. For example, many commands are hidden

before a project has been created.

6. The @CliCommand annotation plays a central role for Roo add-on developers. It allows the

registration of new commands for the Roo Shell. Methods annotated with @CliCommand can

optionally return a String value to contribute a log statement to the Spring Roo Shell. Another, more

flexible, option to provide log statements in the Roo Shell is to register a standard JDK logger,

which allows the developer to present color-coded messages to the user in the Roo shell, with the

color coding being dependent on the log level (warning, info, error, etc).

7. The optional @CliOption annotation can be used to annotate method parameters. These parameters

define command attributes that are presented as part of a command. Roo will attempt to

Simple Add-Ons

1.3.0.RELEASE 128

automatically convert user-entered values into the Java type of the annotated method parameter.

In the example above, Roo will convert the user-entered String to a BatchPropertyName. By

default, Roo offers converters for common number types, String, Date, Enum, Locale, boolean and

Character. See the org.springframework.roo.shell.converters package for examples if you need to

implement a custom converter.

18.4. Operations

Almost all Spring Roo add-ons provide operations types. These types do most of the work behind

Roo's passive generation principle (active generation is taken care of by AspectJ Intertype declarations

(ITDs) - more about that later). Methods offered by the operations types provided by the add-on are

typically invoked by the accompanying "command" type. Alternatively, operations types can also be

invoked by other add-ons (this is a rather unusual case).

Implementations of the Operations interface need to be annotated with the Felix @Component
and @Service annotations to make their functionality available within Roo's OSGi container.

Dependencies can be injected into operations types via the Felix @Reference annotation. If the

dependency exists in a package that is not yet registered in the add-on's pom.xml, you need to add the

dependency there to add the relevant bundle to the add-on's classpath.

The Add-On Creator generated project includes example code which uses Roo's source path

abstractions, file manager and various Util classes that take care of project file management.

Typical functionality offered by operations types include:

• Adding new dependencies, plugins, & repositories to the Maven project pom.xml.

• Copying static artefacts from the add-on jar into the user project (i.e. CSS, images, tagx,

configuration files, etc).

• Configuring application contexts, web.xml, and other config artefacts.

• Managing properties files in the user project.

• Creating new Java source types in the user project.

• Adding trigger (or other) annotations to target types (most common), fields or methods.

Spring Roo offers a wide range of abstractions and metadata types that support these use cases. For

example, the following services are offered:

• org.springframework.roo.process.manager.FileManager

• use file manager for all file system operations in project (offers automatic undo on exception)

• org.springframework.roo.project.PathResolver

• offers abstraction over common project paths

• org.springframework.roo.metadata.MetadataService

• offers access to Roo metadata bean info metadata for mutators/accessors of target type

• org.springframework.roo.project.ProjectMetadata

Simple Add-Ons

1.3.0.RELEASE 129

• project name, top level package read access to project dependencies, repositories, etc

• org.springframework.roo.project.ProjectOperations

• add, remove project Maven dependencies, plugins, repositories, filters, properties, etc

In addition the org.springframework.roo.support bundle provides a number of useful utils classes:

• org.springframework.roo.support.util.Assert

• similar to Spring’s Assert, exceptions thrown by Assert will cause Roo's File manager abstraction

to roll back.

• org.springframework.roo.support.util.FileCopyUtils

• useful for copying resources from add-on into project

• org.springframework.roo.support.util.TemplateUtils

• useful for obtaining InputStream of resources in bundle

• org.springframework.roo.support.util.XmlUtils

• hides XML ugliness

• writeXml methods

• Xpath abstraction & cache

• XML Transformer setup

18.5. Packaging & Distribution

Once your add-on is complete, you can test its functionality locally by generating an OSGi-compliant

jar bundle and installing it in the Spring Roo Shell:

<project-name>$ mvn clean install

This will generate your add-on OSGi bundle in the project's target directory. In a separate directory,

you can start the Spring Roo Shell and use the following command to test your new add-on:

roo> osgi start --url file:///<path-to-addon-project/target/<addon-bundle-name>.<version>.jar

This should install and activate your new Spring Roo Add-On. For troubleshooting, Roo offers the

following OSGi commands:

• osgi ps - Displays OSGi bundle information & status. This should list your add-on as active.

• osgi log - Access OSGi container logs. This could identify possible issues occurring during add-

on activation.

• osgi scr list - Lists all currently registered services and components. This should list your add-on's

command, metadata provider, and operations types.

Simple Add-Ons

1.3.0.RELEASE 130

• osgi scr info - Info about a specific component. This can be used to identify possible unresolved

dependencies.

• osgi start - install a new add-on directly from a local or remote location.

• help osgi - Help on Roo's ~20 osgi commands.

Once you have tested the add-on successfully in your development environment, you can release the

add-on source code to your Google Code project, create a tag, and install all relevant artifacts in the

project's Maven repository:

<project-name>$ svn add pom.xml src/ legal/ readme.txt

<project-name>$ svn commit -m "initial commit"

<project-name>$ mvn release:prepare release:perform

The Maven release plugin will ask for tag and release artefact names. Roo follows the OSGi

convention of using the major, minor and micro version numbers followed by a textual identifier, e.g.

0.1.1.RELEASE, 0.1.2.BUILD-SNAPSHOT, etc.

Deployment for bundles created with Roo's "wrapping" command can be deployed rather than released.

For example, to create a wrapped bundle of the PostgreSQL JDBC driver, use this command:

roo> addon create wrapper --topLevelPackage com.foo.wrapper --projectName spring-roo-postgres-wrapper --artifactId postgresql \

--groupId postgresql --version 9.0-801.jdbc3 --description "Postgres #jdbcdriver driverclass:org.postgresql.Driver." \

--licenseUrl http://jdbc.postgresql.org/license.html --docUrl http://jdbc.postgresql.org/ --vendorName "The PostgreSQL Global Development Group"

This can then be deployed to a Google code project (set up in the same way as described above) with

a simple deploy command:

<project-name>$ mvn deploy

18.6. Publishing to RooBot

Once the release is complete, check your Google Code project to see that your add-on's pom.xml has

been updated to the new version (e.g. 0.1.2.BUILD-SNAPSHOT), that a new tag has been committed

to the tags directory, and that the repo directory has been populated with all the artifacts seen in a

typical Maven repository. All artefacts have been signed with your private PGP key, and your public

key is available in the relevant .asc files. In the repo directory, you should also find the repository.xml

file which contains all relevant information for an OSGi OBR repository.

Raw URLs in Google Code Source Browser

When reviewing file contents via the HTTP interface provided by Google Code, the reader

is presented with HTML documents (which provide syntax highlighting, etc). To get access

to the real (raw) URL of a document (e.g. repo/repository.xml) you need to click the 'View

raw file' link found in the 'File info' section in the right-hand menu. Example of a raw

URL: http://<project-name>.googlecode.com/svn/repo/repository.xml. Make sure the version

appendix is removed from the URL before clicking the 'View raw file' link (i.e. http://<project-

name>.googlecode.com/svn/repo/repository.xml?r=25)

The URL to the raw (see sidebar) repository.xml artefact can then be registered with RooBot:

mailto:s2-roobot@vmware.com

Simple Add-Ons

1.3.0.RELEASE 131

Register your new add-on repository by sending an email to s2-roobot@vmware.com where the subject

line MUST be the raw URL to OSGi repository.xml. The email body is not currently used (but you

can send greetings to the Roo team ;-). Other registration methods are being considered (web front-

end, Roo shell command, etc).

RooBot verifies a few aspects before publishing your new add-on to the community:

• The provided repository.xml must be a valid OSGi repository

• The resource URI must use the httppgp prefix i.e.: <resource uri="httppgp://fr-test.googlecode.com/

svn/…/>

• The bundle referenced in the repository has a corresponding .asc file containing the PgP public key

• The public PGP key of the add-on signer needs to be available at http://keyserver.ubuntu.com/ A

guide to PGP key management can be found here. Make sure to publish your key with this command:

gpg --send-keys --keyserver keyserver.ubuntu.com <your-key-id>

• RooBot will retrieve publicly accessible key information (key owner name, email) from public key

server

• The referenced bundle contains an OSGi-compliant manifest.mf file. For example, it will verify that

the add-on version defined in your repository.xml matches the version defined in the manifest of

your add-on.

• [Important] To ensure your repository is valid, RooBot will download all defined resources in the

repository. To do that, it will read the uri attribute and perform an HTTP GET request against the

defined URL (after replacing the httppgp:// protocol handler with http://). Should the download or

verification of any of the defined resources in the respository fail, RooBot will abort the processing

of the entire repository and try again later.

If all tests pass, RooBot will publish your add-on in a publicly accessible XML registry http://spring-

roo-repository.springsource.org/roobot/roobot.xml. This registry is available to the RooBot client

integrated into the Spring Roo Shell.

Once you have sent your email to s2-roobot@vmware.com, you should receive a response from

RooBot indicating that the processing of your repository has started. If successful, you will

see your add-on listed at http://spring-roo-repository.springsource.org/roobot/roobot.xml within a

few hours. If this does not happen, you can visit the RooBot error log at http://spring-roo-

repository.springsource.org/roobot/roobot-log.txt, which is refreshed every 5 minutes.

Once RooBot has published your add-on sucessfully, it will periodically process your repository to

verify its ongoing validity. As part of this periodic processing, it will also automatically pick up new

versions (add-on releases) in your repository.xml. Therefore it should not be necessary to explicitly

notify RooBot of any changes in your repository.

18.7. Upgrading Spring Roo Add-Ons from 1.0.x to 1.1.0

As OSGi is the runtime platform for Roo 1.1.0 onwards, porting addons from a previous version will

require some small tweaks to your code. Here's a step-by-step guide on what you need to do:

1. Change packaging of your project to bundle

mailto:s2-roobot@vmware.com
http://keyserver.ubuntu.com/
https://help.ubuntu.com/community/GnuPrivacyGuardHowto
http://spring-roo-repository.springsource.org/roobot/roobot.xml
http://spring-roo-repository.springsource.org/roobot/roobot.xml
mailto:s2-roobot@vmware.com
http://spring-roo-repository.springsource.org/roobot/roobot.xml
http://spring-roo-repository.springsource.org/roobot/roobot-log.txt
http://spring-roo-repository.springsource.org/roobot/roobot-log.txt

Simple Add-Ons

1.3.0.RELEASE 132

As your plugin will result in an OSGi bundle, you need to change the packaging from jar to bundle.

This will cause the Maven bundle plugin to create the necessary metadata for you out of the box.

2. Change the type of the dependencies to bundle

Similar to the point above, you need to reference dependencies as bundles. Again, let the Maven

bundle plugin do its job.

3. Sync the build section of your pom with the one provided in the addon template

Compare your add-on's original pom.xml with a pom.xml generated by the addon create command

(see below). This is mostly related to the Maven bundle plugin as well as the Maven SCR plugin

(see next point for details).

Example 18.1. Creating a Roo addon project

addon create simple --topLevelPackage com.mycompany.myproject.roo.addon

The easiest way to do so is simply creating a dummy addon project using the template and copying

the plugin configuration into your pom.

4. Replace @ScopeDevelopment annotations with @Component and @Service

Roo uses Apache Felix as OSGi runtime and thus uses @Component and @Service annotations in

combination with the Maven SCR plugin1 to create descriptors for the OSGi declarative services

infrastructure.

Example 18.2. Component declaration with Apache Felix annotations

@Service

@Component

public class MyCommands implements CommandMarker {

 @Reference MyOperations operations;

 // Your code goes here

}

So every @ScopeDevelopment annotation you used in your command and operations classes has to

be replaced by @Service and @Component. If you had injected other services into your command or

operations class, you can use @Reference to wire them into your component instance. Note that your

class will have to implement at least one interface under which Felix can publish the component

instance. Check the output of the Maven SCR plugin for errors to see whether any further tweaks

are necessary.

1for details see http://felix.apache.org/site/apache-felix-maven-scr-plugin.html

http://felix.apache.org/site/apache-felix-maven-scr-plugin.html

1.3.0.RELEASE 133

Chapter 19. Advanced Add-Ons

TBC.

19.1. Metadata

TBC

19.2. Annotations

TBC

19.3. Inter-Type Declarations

TBC

19.4. Recommendations

TBC

1.3.0.RELEASE 134

Part IV. External Add-Ons
In this part of the guide we detail external Roo add-ons.

1.3.0.RELEASE 135

Chapter 20. Tailor Add-On

20.1. Introduction

Roo has been become more and more powerful and offers more options for users on how to use Roo.

This in turn makes it more challenging in some scenarios to use Roo in a consistent way throughout

a project.

The tailor addon enables:

• Teams working on large projects to ensure streamlined Roo usage according to their project's

standards and guidelines

• Single users to define the approach they usually take in one file to reuse it over multiple projects

Examples of use cases:

• A team does not want to use the Active Record pattern for entities, but always wants developers to

specify "--activeRecord false", and create a JPA repository based on every new entity.

• A developer always uses a certain project structure to create web projects, for exmple a Maven

project with 2 modules called "domain" and "web". The developer wants to be able to reuse this

structure with the project command, and make sure that the shell automatically focuses on the correct

module for certain commands (e.g. entity > domain, web mvc > web).

20.2. How it works

When tailoring is activated, Roo commands are intercepted by the shell and transformed to a new set

of commands according to user specifications obtained from configuration file, if any exist for that

particular command. The shell then executes this transformed set of commands instead of the initial

command. A user can define one or multiple tailor configurations and activate and deactivate them

while working with the shell.

With the tailor add-on, you can define:

• Reusable project structures to use with the "project" command

• Default target modules for commands.

• Default values for command arguments.

• Chains of commands, either triggered by an existing command or composed by an alias

Note that although a tailor configuration can save you a lot of time and effort, it cancels out some

of the shell's command completion benefits at the same time. For example, some commands are only

available in certain modules (e.g. JPA commands are only available in modules with JPA setup).

Tailoring a default module for JPA commands like "entity jpa" means that you can execute those

commands while focused on modules without JPA setup. But the tailoring only kicks in at execution

time, so the shell won't know about it while you are typing. Thus, the shell won't offer command

completion for these commands because it thinks they are not available.

Tailor Add-On

1.3.0.RELEASE 136

20.3. Tailor Add-On Commands

tailor list - Shows the list of available tailor configurations. A tailor configuration defines the set of

transformation you want executed for certain commands (see next section "Tailor Configuration").

roo> tailor list

Available tailor configurations:

 o webstyle - Web project with 2 modules, DOMAIN and PRESENTATION

tailor activate – Activate one of the available configurations.

roo> tailor activate --name webstyle

"tailor list" indicates which configuration is currently activated:

roo> tailor list

Available tailor configurations:

 o webstyle [ACTIVE] - Web project with 2 modules, DOMAIN and PRESENTATION

tailor deactivate – Deactivate the tailor mode. There is no active configuration after this command

roo> tailor deactivate

20.4. Tailor Configuration

A tailor configuration can be created in two ways:

• XML configuration file (no add-on development required)

• Directly in Java (requires creation and installation of a new add-on)

Each tailor configuration has one or more command configurations. A command configuration defines

a set of Actions that are triggered whenever a certain command is executed. Execution of those actions

results in a new list of output commands that will eventually be executed by the shell. A command

configuration is triggered whenever a command that starts with a defined string is executed. E.g., if a

command configuration defines "web mvc" as a trigger, then it will be used by the tailor every time

a "web mvc" subcommand is executed. The order in which you define the command configurations

might matter, the tailor will always take the first command configuration that matches a command.

An action is a transformation step to be applied to the command defined in a command configuration.

Each action type defines a set of parameters that can be set in a tailor definition. The tailor addon can

be extended with more action types by the community.

Actions are executed sequentially by the tailor, so the order in which they are declared matters.

The following actions are currently available:

20.4.1. Actions

20.4.1.1. execute

Adds a command to the list of commands to be executed. Note that each command configuration

should have at least one execute action, otherwise the tailor will not lead to any command executions.

Tailor Add-On

1.3.0.RELEASE 137

command

Command line to be executed. If empty, this action will add the original command to the list of

output commands at this point. (optional)

exclude

A comma separated list of arguments that should be removed from the command before execution.

This can be useful if the original command is executed ("command" argument not set), and it was

enhanced with additional arguments for the benefit of the tailoring. (optional)

20.4.1.2. defaultvalue

If the Roo user does not provide a value for an argument with the given name on the shell, this default

value will be chosen.

argument

Name of the Roo command's argument that will get a default value. (mandatory)

value

Default value for the argument. (mandatory)

force

If "true", the default value will be chosen even if the user specified an alternative value in the

command. (optional, defaults to "false")

20.4.1.3. focus

module

Focus on a module, in form of a simple pattern to match against the module names. Does not

support regular expressions, just a simple "contains" match. Use this instead of an "execute

command 'module focus...'" if you do not want to hard code your module names into the reusable

tailor configuration. (mandatory)

Advanced usage: Use a comma-separated list of strings to look for in module names. The comma

will be interpreted as "AND" by the search for a module. Use a slash "/" before a string in the list

to indicate that this next string must "NOT" be contained in the module name.

20.4.2. XML Configuration

This section describes how to create a tailor configuration with XML by examples.

The XML configuration file “tailor.xml” must be placed into the root project folder. Alternatively, you

can put a "tailor.xml" into your system's user folder, to maintain tailor configurations that you want to

reuse over several projects. The tailor addon will only look for this file if it does not find a tailor.xml

file in the project root.

20.4.2.1. Example 1: Tailor the "project" command

The following configuration defines a chain of commands that will be triggered by the project

command, to create a parent project with packaging “pom” with two modules named “projectname-

domain” and “projectname-data”.

Note how you can use argument values from the input command as placeholders by using

“${argumentname}”.

tailor.xml:

Tailor Add-On

1.3.0.RELEASE 138

<tailor name="mywebstyle" description="Standards for web projects with 2 modules">

 <config command="project">

 <action type="defaultvalue" argument="packaging" value="pom" />

 <action type="execute" />

 <action type="execute" command="module create --moduleName ${projectName}-domain --topLevelPackage ${topLevelPackage}"/>

 <action type="focus" module="~"/>

 <action type="execute" command="module create --moduleName ${projectName}-web --topLevelPackage ${topLevelPackage} --packaging war"/>

 <action type="focus" module="${projectName}-domain"/>

 </config>

</tailor>

Shell:

tailor activate --name mywebstyle

project --topLevelPackage com.foo.sample --projectName myapp

Will result in:

project --topLevelPackage com.foo.sample --projectName mywebapp --packaging pom

module create --moduleName myapp-domain --topLevelPackage com.foo.sample

module focus --moduleName ~

module create --moduleName myapp-web --topLevelPackage com.foo.sample --packaging war

module focus --moduleName myapp-domain

20.4.2.2. Example 2: Default target modules and default values

The following example shows how to tailor the “entity jpa” command with a default value for the

"activeRecord" argument, and a default module to put all entities in.

Note that the module name value for the "focus" action is interpreted as "module name contains x".

That is why this example works with the project setup described in the previous example, which sets

up a module named "${projectName]-domain".

tailor.xml:

<config command="entity jpa">

 <action type="focus" module="domain"/>

 <action type="defaultvalue" argument="--activeRecord" value="false"/>

 <action type="execute"/>

</config>

Shell:

entity jpa --class ~.Customer

Results in:

module focus --moduleName webapp-domain

entity jpa --class ~.Customer --activeRecord false

20.4.2.3. Example 3: Alias command to create layers

In this example, the tailor configuration defines a new alias command that will trigger a set of other

commands to scaffold repository, service and web layer for an entity. Note that this configuration does

not define the "execute" action to execute the original "layer" command.

Although "layer" is not a command known to the shell, it won’t produce an error, because the tailor

will transform it into a set of different commands, excluding the original. The downside is that you

won’t get command completion support for this alias from the shell.

Tailor Add-On

1.3.0.RELEASE 139

tailor.xml:

<config command="layer">

 <action type="focus" module="domain"/>

 <!-- Create spring data JPA repository -->

 <action type="execute" command="repository jpa --interface ${entity}Repository --entity ${entity}"/>

 <!-- Create service interface and implementation class-->

 <action type="execute" command="service --interface ${entity}Service --class ${entity}ServiceImpl --entity ${entity}"/>

 <action type="focus" module="web"/>

 <action type="execute" command="web mvc scaffold --class ${entity}Controller --backingType ${entity}"/>

</config>

Shell:

layer --entity ~.Customer

Results in:

module focus --moduleName webapp-domain

repository jpa --interface ~.CustomerRepository --entity ~.Customer

service --interface ~.CustomerService --class ~.CustomerServiceImpl --entity ~.Customer

module focus --moduleName webapp-web

web mvc scaffold --class ~.CustomerController --backingType ~.Customer

20.4.3. Configuration Addon

A new tailor configuration can also be defined in Java, instead of XML. This requires the creation of a

new simple addon that you would need to build and install as a bundle in your Roo installation. Once

your tailor extension bundle is running, the “tailor” commands will recognize all tailor configurations

you implemented in that addon.

This is a more static and elaborate way of creating tailor configurations. However, it might be useful

if you want to distribute a configuration to a large group of users.

After you created a new (simple) addon, you need to do the following:

Add dependency to addon-tailor

<dependency>

 <groupId>org.springframework.roo</groupId>

 <artifactId>org.springframework.roo.addon.tailor</artifactId>

 </dependency>

Create a class that implements TailorConfigurationFactory

@Component

@Service

public class TailorWebSimpleConfiguration implements TailorConfigurationFactory {

 ...

}

Override createTailorConfiguration()

@Override

public TailorConfiguration createTailorConfiguration() {

 String description = "Web project with 2 modules DOMAIN-PRESENTATION";

 TailorConfiguration configuration = new TailorConfiguration("webstyle-simple", description);

 configuration.addCommandConfig(createCommandConfigProject());

 configuration.addCommandConfig(createCommandConfigJpaSetup());

 return configuration;

Tailor Add-On

1.3.0.RELEASE 140

}

Implement and add the CommandConfiguration objects you want to support.

Add a chain of actions similar to how you would do in an XML configuration file, as described

above.

private CommandConfiguration createCommandConfigJpaSetup() {

 CommandConfiguration config = new CommandConfiguration();

 config.setCommandName("jpa setup");

 config.addAction(ActionConfigFactory.focusAction(

 "domain"));

 config.addAction(ActionConfigFactory.defaultArgumentAction(

 "database", "HYPERSONIC_IN_MEMORY"));

 config.addAction(ActionConfigFactory.defaultArgumentAction(

 "provider", "HIBERNATE"));

 config.addAction(ActionConfigFactory.executeAction());

 return config;

}

1.3.0.RELEASE 141

Part V. Appendices
The fourth and final part of the reference guide provides appendices and background information that does

not neatly belong within the other parts. The information is intended to be treated as a reference and not read

consecutively.

1.3.0.RELEASE 142

Appendix A. Command Index
This appendix was automatically built from Roo 1.3.0.RELEASE [rev 770570e].

Commands are listed in alphabetic order, and are shown in monospaced font with any mandatory

options you must specify when using the command. Most commands accept a large number of options,

and all of the possible options for each command are presented in this appendix.

A.1. Add On Commands

Add On Commands are contained in org.springframework.roo.addon.roobot.client.AddOnCommands.

A.1.1. addon feedback bundle

Provide anonymous ratings and comments on a Spring Roo Add-on (your feedback will be published

publicly)

addon feedback bundle --bundleSymbolicName --rating

--bundleSymbolicName

The bundle symbolic name for the add-on of interest; default: '__NULL__' (mandatory)

--rating

How much did you like this add-on?; default: '__NULL__' (mandatory)

--comment

Your comments on this add-on eg "this is my comment!"; limit of 140 characters; default:

'__NULL__'

A.1.2. addon info bundle

Provide information about a specific Spring Roo Add-on

addon info bundle --bundleSymbolicName

--bundleSymbolicName

The bundle symbolic name for the add-on of interest; default: '__NULL__' (mandatory)

A.1.3. addon info id

Provide information about a specific Spring Roo Add-on

addon info id --searchResultId

--searchResultId

The bundle ID as presented via the addon list or addon search command; default:

'__NULL__' (mandatory)

A.1.4. addon install bundle

Install Spring Roo Add-on

addon install bundle --bundleSymbolicName

Command Index

1.3.0.RELEASE 143

--bundleSymbolicName

The bundle symbolic name for the add-on of interest; default: '__NULL__' (mandatory)

A.1.5. addon install id

Install Spring Roo Add-on

addon install id --searchResultId

--searchResultId

The bundle ID as presented via the addon list or addon search command; default:

'__NULL__' (mandatory)

A.1.6. addon list

List all known Spring Roo Add-ons (up to the maximum number displayed on a single page)

addon list

--refresh

Refresh the add-on index from the Internet; default if option present: 'true'; default if option not

present: 'false'

--linesPerResult

The maximum number of lines displayed per add-on; default: '2'

--maxResults

The maximum number of add-ons to list; default: '99'

--trustedOnly

Only display trusted add-ons in search results; default if option present: 'true'; default if option

not present: 'false'

--communityOnly

Only display community provided add-ons in search results; default if option present: 'true'; default

if option not present: 'false'

--compatibleOnly

Only display compatible add-ons in search results; default if option present: 'true'; default if option

not present: 'false'

A.1.7. addon remove

Remove Spring Roo Add-on

addon remove --bundleSymbolicName

--bundleSymbolicName

The bundle symbolic name for the add-on of interest; default: '__NULL__' (mandatory)

A.1.8. addon search

Search all known Spring Roo Add-ons

Command Index

1.3.0.RELEASE 144

addon search

--requiresDescription

A comma separated list of search terms; default: '*'

--refresh

Refresh the add-on index from the Internet; default if option present: 'true'; default if option not

present: 'false'

--linesPerResult

The maximum number of lines displayed per add-on; default: '2'

--maxResults

The maximum number of add-ons to list; default: '20'

--trustedOnly

Only display trusted add-ons in search results; default if option present: 'true'; default if option

not present: 'false'

--compatibleOnly

Only display compatible add-ons in search results; default if option present: 'true'; default if option

not present: 'false'

--communityOnly

Only display community provided add-ons in search results; default if option present: 'true'; default

if option not present: 'false'

--requiresCommand

Only display add-ons in search results that offer this command; default: '__NULL__'

A.1.9. addon upgrade all

Upgrade all relevant Spring Roo Add-ons / Components for the current stability level

addon upgrade all

This command does not accept any options.

A.1.10. addon upgrade available

List available Spring Roo Add-on / Component upgrades

addon upgrade available

--addonStabilityLevel

The stability level of add-ons or components which are presented for upgrading (default: ANY);

default: '__NULL__'

A.1.11. addon upgrade bundle

Upgrade a specific Spring Roo Add-on / Component

addon upgrade bundle --bundleSymbolicName

Command Index

1.3.0.RELEASE 145

--bundleSymbolicName

The bundle symbolic name for the add-on to upgrade; default: '__NULL__' (mandatory)

A.1.12. addon upgrade id

Upgrade a specific Spring Roo Add-on / Component from a search result ID

addon upgrade id --searchResultId

--searchResultId

The bundle ID as presented via the addon list or addon search command; default:

'__NULL__' (mandatory)

A.1.13. addon upgrade settings

Settings for Add-on upgrade operations

addon upgrade settings

--addonStabilityLevel

The stability level of add-ons or components which are presented for upgrading; default:

'__NULL__'

A.2. Backup Commands

Backup Commands are contained in org.springframework.roo.addon.backup.BackupCommands.

A.2.1. backup

Backup your project to a zip file

backup

This command does not accept any options.

A.3. Classpath Commands

Classpath Commands are contained in

org.springframework.roo.classpath.operations.ClasspathCommands.

A.3.1. class

Creates a new Java class source file in any project path

class --class

--class

The name of the class to create; default: '__NULL__' (mandatory)

--rooAnnotations

Whether the generated class should have common Roo annotations; default if option present: 'true';

default if option not present: 'false'

Command Index

1.3.0.RELEASE 146

--path

Source directory to create the class in; default: 'FOCUSED|SRC_MAIN_JAVA'

--extends

The superclass (defaults to java.lang.Object); default if option not present: 'java.lang.Object'

--implements

The interface to implement; default: '__NULL__'

--abstract

Whether the generated class should be marked as abstract; default if option present: 'true'; default

if option not present: 'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.3.2. constructor

Creates a class constructor

constructor

--class

The name of the class to receive this constructor; default if option not present: '*'

--fields

The fields to include in the constructor. Multiple field names must be a double-quoted list separated

by spaces

A.3.3. enum constant

Inserts a new enum constant into an enum

enum constant --name

--class

The name of the enum class to receive this field; default if option not present: '*'

--name

The name of the constant; default: '__NULL__' (mandatory)

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.3.4. enum type

Creates a new Java enum source file in any project path

enum type --class

--class

The name of the enum to create; default: '__NULL__' (mandatory)

Command Index

1.3.0.RELEASE 147

--path

Source directory to create the enum in; default: 'FOCUSED|SRC_MAIN_JAVA'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.3.5. focus

Changes focus to a different type

focus --class

--class

The type to focus on; default: '__NULL__' (mandatory)

A.3.6. interface

Creates a new Java interface source file in any project path

interface --class

--class

The name of the interface to create; default: '__NULL__' (mandatory)

--path

Source directory to create the interface in; default: 'FOCUSED|SRC_MAIN_JAVA'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.4. Cloud Commands

Cloud Commands are contained in org.springframework.roo.addon.cloud.CloudCommands.

A.4.1. cloud setup

Setup Cloud Provider on Spring Roo Project

cloud setup --provider

--provider

Cloud Provider's Name; default: '__NULL__' (mandatory)

--configuration

Plugin Configuration. Add configuration by command like

'key=value,key2=value2,key3=value3'; default: '__NULL__'

A.5. Controller Commands

Controller Commands are contained in

org.springframework.roo.addon.web.mvc.controller.ControllerCommands.

Command Index

1.3.0.RELEASE 148

A.5.1. controller all

Scaffold controllers for all project entities without an existing controller - deprecated, use 'web mvc

setup' + 'web mvc all' instead

controller all --package

--package

The package in which new controllers will be placed; default: '__NULL__' (mandatory)

A.5.2. controller scaffold

Create a new scaffold Controller (ie where we maintain CRUD automatically) - deprecated, use 'web

mvc scaffold' instead

controller scaffold --class

--class

The path and name of the controller object to be created; default: '__NULL__' (mandatory)

--entity

The name of the entity object which the controller exposes to the web tier; default if option not

present: '*'

--path

The base path under which the controller listens for RESTful requests (defaults to the simple name

of the form backing object); default: '__NULL__'

--disallowedOperations

A comma separated list of operations (only create, update, delete allowed) that should not be

generated in the controller; default: '__NULL__'

A.5.3. web mvc all

Scaffold Spring MVC controllers for all project entities without an existing controller

web mvc all --package

--package

The package in which new controllers will be placed; default: '__NULL__' (mandatory)

A.5.4. web mvc scaffold

Create a new scaffold Controller (ie where Roo maintains CRUD functionality automatically)

web mvc scaffold --class

--class

The path and name of the controller object to be created; default: '__NULL__' (mandatory)

--backingType

The name of the form backing type which the controller exposes to the web tier; default if option

not present: '*'

Command Index

1.3.0.RELEASE 149

--path

The base path under which the controller listens for RESTful requests (defaults to the simple name

of the form backing object); default: '__NULL__'

--disallowedOperations

A comma separated list of operations (only create, update, delete allowed) that should not be

generated in the controller; default: '__NULL__'

A.6. Creator Commands

Creator Commands are contained in org.springframework.roo.addon.creator.CreatorCommands.

A.6.1. addon create advanced

Create a new advanced add-on for Spring Roo (commands + operations + metadata + trigger annotation

+ dependencies)

addon create advanced --topLevelPackage

--topLevelPackage

The top level package of the new addon; default: '__NULL__' (mandatory)

--description

Description of your addon (surround text with double quotes); default: '__NULL__'

--projectName

Provide a custom project name (if not provided the top level package name will be used instead);

default: '__NULL__'

A.6.2. addon create i18n

Create a new Internationalization add-on for Spring Roo

addon create i18n --topLevelPackage --locale --messageBundle

--topLevelPackage

The top level package of the new addon; default: '__NULL__' (mandatory)

--locale

The locale abbreviation (ie: en, or more specific like en_AU, or de_DE); default:

'__NULL__' (mandatory)

--messageBundle

Fully qualified path to the messages_xx.properties file; default: '__NULL__' (mandatory)

--language

The full name of the language (used as a label for the UI); default: '__NULL__'

--flagGraphic

Fully qualified path to flag xx.png file; default: '__NULL__'

--description

Description of your addon (surround text with double quotes); default: '__NULL__'

Command Index

1.3.0.RELEASE 150

--projectName

Provide a custom project name (if not provided the top level package name will be used instead);

default: '__NULL__'

A.6.3. addon create simple

Create a new simple add-on for Spring Roo (commands + operations)

addon create simple --topLevelPackage

--topLevelPackage

The top level package of the new addon; default: '__NULL__' (mandatory)

--description

Description of your addon (surround text with double quotes); default: '__NULL__'

--projectName

Provide a custom project name (if not provided the top level package name will be used instead);

default: '__NULL__'

A.6.4. addon create wrapper

Create a new add-on for Spring Roo which wraps a maven artifact to create a OSGi compliant bundle

addon create wrapper --topLevelPackage --groupId --artifactId --version --vendorName --licenseUrl

--topLevelPackage

The top level package of the new wrapper bundle; default: '__NULL__' (mandatory)

--groupId

Dependency group id; default: '__NULL__' (mandatory)

--artifactId

Dependency artifact id); default: '__NULL__' (mandatory)

--version

Dependency version; default: '__NULL__' (mandatory)

--vendorName

Dependency vendor name); default: '__NULL__' (mandatory)

--licenseUrl

Dependency license URL; default: '__NULL__' (mandatory)

--docUrl

Dependency documentation URL; default: '__NULL__'

--description

Description of the bundle (use keywords with #-tags for better search integration); default:

'__NULL__'

--projectName

Provide a custom project name (if not provided the top level package name will be used instead);

default: '__NULL__'

Command Index

1.3.0.RELEASE 151

--osgiImports

Contents of Import-Package in OSGi manifest; default: '__NULL__'

A.7. Data On Demand Commands

Data On Demand Commands are contained in

org.springframework.roo.addon.dod.DataOnDemandCommands.

A.7.1. dod

Creates a new data on demand for the specified entity

dod

--entity

The entity which this data on demand class will create and modify as required; default if option

not present: '*'

--class

The class which will be created to hold this data on demand provider (defaults to the entity name

+ 'DataOnDemand'); default: '__NULL__'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.8. Dbre Commands

Dbre Commands are contained in org.springframework.roo.addon.dbre.DbreCommands.

A.8.1. database introspect

Displays database metadata

database introspect --schema

--schema

The database schema names. Multiple schema names must be a double-quoted list separated by

spaces; default: '__NULL__' (mandatory)

--file

The file to save the metadata to; default: '__NULL__'

--enableViews

Display database views; default if option present: 'true'; default if option not present: 'false'

A.8.2. database reverse engineer

Create and update entities based on database metadata

database reverse engineer --schema

Command Index

1.3.0.RELEASE 152

--schema

The database schema names. Multiple schema names must be a double-quoted list separated by

spaces; default: '__NULL__' (mandatory)

--package

The package in which new entities will be placed; default: '__NULL__'

--testAutomatically

Create automatic integration tests for entities; default if option present: 'true'; default if option not

present: 'false'

--enableViews

Reverse engineer database views; default if option present: 'true'; default if option not present:

'false'

--includeTables

The tables to include in reverse engineering. Multiple table names must be a double-quoted list

separated by spaces

--excludeTables

The tables to exclude from reverse engineering. Multiple table names must be a double-quoted

list separated by spaces

--includeNonPortableAttributes

Include non-portable JPA @Column attributes such as 'columnDefinition'; default if option

present: 'true'; default if option not present: 'false'

--disableVersionFields

Disable 'version' field; default if option present: 'true'; default if option not present: 'false'

--disableGeneratedIdentifiers

Disable identifier auto generation; default if option present: 'true'; default if option not present:

'false'

--activeRecord

Generate CRUD active record methods for each entity; default: 'true'

--repository

Generate a repository for each entity; default if option present: 'true'; default if option not present:

'false'

--service

Generate a service for each entity; default if option present: 'true'; default if option not present:

'false'

A.9. Embedded Commands

Embedded Commands are contained in

org.springframework.roo.addon.web.mvc.embedded.EmbeddedCommands.

A.9.1. web mvc embed document

Embed a document for your WEB MVC application

Command Index

1.3.0.RELEASE 153

web mvc embed document --provider --documentId

--provider

The id of the document; default: '__NULL__' (mandatory)

--documentId

The id of the document; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.2. web mvc embed generic

Embed media by URL into your WEB MVC application

web mvc embed generic --url

--url

The url of the source to be embedded; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.3. web mvc embed map

Embed a map for your WEB MVC application

web mvc embed map --location

--location

The location of the map (ie "Sydney, Australia"); default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.4. web mvc embed photos

Embed a photo gallery for your WEB MVC application

web mvc embed photos --provider --userId --albumId

--provider

The provider of the photo gallery; default: '__NULL__' (mandatory)

--userId

The user id; default: '__NULL__' (mandatory)

--albumId

The album id; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.5. web mvc embed stream video

Embed a video stream into your WEB MVC application

Command Index

1.3.0.RELEASE 154

web mvc embed stream video --provider --streamId

--provider

The provider of the video stream; default: '__NULL__' (mandatory)

--streamId

The stream id; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.6. web mvc embed twitter

Embed twitter messages into your WEB MVC application

web mvc embed twitter --searchTerm

--searchTerm

The search term to display results for; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.7. web mvc embed video

Embed a video for your WEB MVC application

web mvc embed video --provider --videoId

--provider

The id of the video; default: '__NULL__' (mandatory)

--videoId

The id of the video; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.9.8. web mvc embed wave

Embed Google wave integration for your WEB MVC application

web mvc embed wave --waveId

--waveId

The key of the wave; default: '__NULL__' (mandatory)

--viewName

The name of the jspx view; default: '__NULL__'

A.10. Equals Commands

Equals Commands are contained in org.springframework.roo.addon.equals.EqualsCommands.

Command Index

1.3.0.RELEASE 155

A.10.1. equals

Add equals and hashCode methods to a class

equals

--class

The name of the class; default if option not present: '*'

--appendSuper

Whether to call the super class equals and hashCode methods; default if option present: 'true';

default if option not present: 'false'

--excludeFields

The fields to exclude in the equals and hashcode methods. Multiple field names must be a double-

quoted list separated by spaces

A.11. Felix Delegator

Felix Delegator are contained in org.springframework.roo.felix.FelixDelegator.

A.11.1. exit

Exits the shell

exit

This command does not accept any options.

A.11.2. osgi framework command

Passes a command directly through to the Felix shell infrastructure

osgi framework command

--[default]

The command to pass to Felix (WARNING: no validation or security checks are performed);

default: 'help'

A.11.3. osgi headers

Display headers for a specific bundle

osgi headers

--bundleSymbolicName

Limit results to a specific bundle symbolic name; default: '__NULL__'

A.11.4. osgi install

Installs a bundle JAR from a given URL

osgi install --url

Command Index

1.3.0.RELEASE 156

--url

The URL to obtain the bundle from; default: '__NULL__' (mandatory)

A.11.5. osgi log

Displays the OSGi log information

osgi log

--maximumEntries

The maximum number of log messages to display; default: '__NULL__'

--level

The minimum level of messages to display; default: '__NULL__'

A.11.6. osgi obr deploy

Deploys a specific OSGi Bundle Repository (OBR) bundle

osgi obr deploy --bundleSymbolicName

--bundleSymbolicName

The specific bundle to deploy; default: '__NULL__' (mandatory)

A.11.7. osgi obr info

Displays information on a specific OSGi Bundle Repository (OBR) bundle

osgi obr info --bundleSymbolicName

--bundleSymbolicName

The specific bundle to display information for; default: '__NULL__' (mandatory)

A.11.8. osgi obr list

Lists all available bundles from the OSGi Bundle Repository (OBR) system

osgi obr list

--keywords

Keywords to locate; default: '__NULL__'

A.11.9. osgi obr start

Starts a specific OSGi Bundle Repository (OBR) bundle

osgi obr start --bundleSymbolicName

--bundleSymbolicName

The specific bundle to start; default: '__NULL__' (mandatory)

A.11.10. osgi ps

Displays OSGi bundle information

Command Index

1.3.0.RELEASE 157

osgi ps

--format

The format of bundle information; default: 'BUNDLE_NAME'

A.11.11. osgi resolve

Resolves a specific bundle ID

osgi resolve --bundleSymbolicName

--bundleSymbolicName

The specific bundle to resolve; default: '__NULL__' (mandatory)

A.11.12. osgi scr config

Lists the current SCR configuration

osgi scr config

This command does not accept any options.

A.11.13. osgi scr disable

Disables a specific SCR-defined component

osgi scr disable --componentId

--componentId

The specific component identifier (use 'osgi scr list' to list component identifiers); default:

'__NULL__' (mandatory)

A.11.14. osgi scr enable

Enables a specific SCR-defined component

osgi scr enable --componentId

--componentId

The specific component identifier (use 'osgi scr list' to list component identifiers); default:

'__NULL__' (mandatory)

A.11.15. osgi scr info

Lists information about a specific SCR-defined component

osgi scr info --componentId

--componentId

The specific component identifier (use 'osgi scr list' to list component identifiers); default:

'__NULL__' (mandatory)

A.11.16. osgi scr list

Lists all SCR-defined components

Command Index

1.3.0.RELEASE 158

osgi scr list

--bundleId

Limit results to a specific bundle; default: '__NULL__'

A.11.17. osgi start

Starts a bundle JAR from a given URL

osgi start --url

--url

The URL to obtain the bundle from; default: '__NULL__' (mandatory)

A.11.18. osgi uninstall

Uninstalls a specific bundle

osgi uninstall --bundleSymbolicName

--bundleSymbolicName

The specific bundle to uninstall; default: '__NULL__' (mandatory)

A.11.19. osgi update

Updates a specific bundle

osgi update --bundleSymbolicName

--bundleSymbolicName

The specific bundle to update ; default: '__NULL__' (mandatory)

--url

The URL to obtain the updated bundle from; default: '__NULL__'

A.12. Field Commands

Field Commands are contained in org.springframework.roo.classpath.operations.FieldCommands.

A.12.1. field boolean

Adds a private boolean field to an existing Java source file

field boolean --fieldName

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

Command Index

1.3.0.RELEASE 159

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--assertFalse

Whether this value must assert false; default if option present: 'true'; default if option not present:

'false'

--assertTrue

Whether this value must assert true; default if option present: 'true'; default if option not present:

'false'

--column

The JPA @Column name; default: '__NULL__'

--value

Inserts an optional Spring @Value annotation with the given content; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--primitive

Indicates to use a primitive type; default if option present: 'true'; default if option not present: 'false'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.2. field date

Adds a private date field to an existing Java source file

field date --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The Java type of the entity; default: '__NULL__' (mandatory)

--persistenceType

The type of persistent storage to be used; default: '__NULL__'

--class

The name of the class to receive this field; default if option not present: '*'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

Command Index

1.3.0.RELEASE 160

--future

Whether this value must be in the future; default if option present: 'true'; default if option not

present: 'false'

--past

Whether this value must be in the past; default if option present: 'true'; default if option not present:

'false'

--column

The JPA @Column name; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--value

Inserts an optional Spring @Value annotation with the given content; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

--dateFormat

Indicates the style of the date format (ignored if dateTimeFormatPattern is specified); default:

'MEDIUM'

--timeFormat

Indicates the style of the time format (ignored if dateTimeFormatPattern is specified); default:

'NONE'

--dateTimeFormatPattern

Indicates a DateTime format pattern such as yyyy-MM-dd hh:mm:ss a; default: '__NULL__'

A.12.3. field embedded

Adds a private @Embedded field to an existing Java source file

field embedded --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The Java type of the @Embeddable class; default: '__NULL__' (mandatory)

--class

The name of the @Entity class to receive this field; default if option not present: '*'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

Command Index

1.3.0.RELEASE 161

A.12.4. field enum

Adds a private enum field to an existing Java source file

field enum --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The enum type of this field; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--column

The JPA @Column name; default: '__NULL__'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--enumType

The fetch semantics at a JPA level; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.5. field file

Adds a byte array field for storing uploaded file contents (JSF-scaffolded UIs only)

field file --fieldName --contentType

--fieldName

The name of the file upload field to add; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--contentType

The content type of the file; default: '__NULL__' (mandatory)

Command Index

1.3.0.RELEASE 162

--autoUpload

Whether the file is uploaded automatically when selected; default if option present: 'true'; default

if option not present: 'false'

--column

The JPA @Column name; default: '__NULL__'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.6. field list

Adds a private List field to an existing Java source file (eg the 'one' side of a many-to-one)

field list --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The entity which will be contained within the Set; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--mappedBy

The field name on the referenced type which owns the relationship; default: '__NULL__'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--sizeMin

The minimum number of elements in the collection; default: '__NULL__'

--sizeMax

The maximum number of elements in the collection; default: '__NULL__'

--cardinality

The relationship cardinality at a JPA level; default: 'MANY_TO_MANY'

--fetch

The fetch semantics at a JPA level; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

Command Index

1.3.0.RELEASE 163

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.7. field number

Adds a private numeric field to an existing Java source file

field number --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The Java type of the entity; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--decimalMin

The BigDecimal string-based representation of the minimum value; default: '__NULL__'

--decimalMax

The BigDecimal string based representation of the maximum value; default: '__NULL__'

--digitsInteger

Maximum number of integral digits accepted for this number; default: '__NULL__'

--digitsFraction

Maximum number of fractional digits accepted for this number; default: '__NULL__'

--min

The minimum value; default: '__NULL__'

--max

The maximum value; default: '__NULL__'

--column

The JPA @Column name; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

Command Index

1.3.0.RELEASE 164

--value

Inserts an optional Spring @Value annotation with the given content; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--primitive

Indicates to use a primitive type if possible; default if option present: 'true'; default if option not

present: 'false'

--unique

Indicates whether to mark the field with a unique constraint; default if option present: 'true'; default

if option not present: 'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.8. field other

Inserts a private field into the specified file

field other --fieldName --type

--fieldName

The name of the field; default: '__NULL__' (mandatory)

--type

The Java type of this field; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--column

The JPA @Column name; default: '__NULL__'

--value

Inserts an optional Spring @Value annotation with the given content; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

Command Index

1.3.0.RELEASE 165

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.9. field reference

Adds a private reference field to an existing Java source file (eg the 'many' side of a many-to-one)

field reference --fieldName --type

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The Java type of the entity to reference; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--joinColumnName

The JPA @JoinColumn name; default: '__NULL__'

--referencedColumnName

The JPA @JoinColumn referencedColumnName; default: '__NULL__'

--cardinality

The relationship cardinality at a JPA level; default: 'MANY_TO_ONE'

--fetch

The fetch semantics at a JPA level; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.10. field set

Adds a private Set field to an existing Java source file (eg the 'one' side of a many-to-one)

field set --fieldName --type

Command Index

1.3.0.RELEASE 166

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--type

The entity which will be contained within the Set; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

--mappedBy

The field name on the referenced type which owns the relationship; default: '__NULL__'

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--sizeMin

The minimum number of elements in the collection; default: '__NULL__'

--sizeMax

The maximum number of elements in the collection; default: '__NULL__'

--cardinality

The relationship cardinality at a JPA level; default: 'MANY_TO_MANY'

--fetch

The fetch semantics at a JPA level; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.12.11. field string

Adds a private string field to an existing Java source file

field string --fieldName

--fieldName

The name of the field to add; default: '__NULL__' (mandatory)

--class

The name of the class to receive this field; default if option not present: '*'

Command Index

1.3.0.RELEASE 167

--notNull

Whether this value cannot be null; default if option present: 'true'; default if option not present:

'false'

--nullRequired

Whether this value must be null; default if option present: 'true'; default if option not present: 'false'

--decimalMin

The BigDecimal string-based representation of the minimum value; default: '__NULL__'

--decimalMax

The BigDecimal string based representation of the maximum value; default: '__NULL__'

--sizeMin

The minimum string length; default: '__NULL__'

--sizeMax

The maximum string length; default: '__NULL__'

--regexp

The required regular expression pattern; default: '__NULL__'

--column

The JPA @Column name; default: '__NULL__'

--value

Inserts an optional Spring @Value annotation with the given content; default: '__NULL__'

--comment

An optional comment for JavaDocs; default: '__NULL__'

--transient

Indicates to mark the field as transient; default if option present: 'true'; default if option not present:

'false'

--unique

Indicates whether to mark the field with a unique constraint; default if option present: 'true'; default

if option not present: 'false'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

--lob

Indicates that this field is a Large Object; default if option present: 'true'; default if option not

present: 'false'

A.13. Finder Commands

Finder Commands are contained in org.springframework.roo.addon.finder.FinderCommands.

A.13.1. finder add

Install finders in the given target (must be an entity)

Command Index

1.3.0.RELEASE 168

finder add --finderName

--class

The controller or entity for which the finders are generated; default if option not present: '*'

--finderName

The finder string as generated with the 'finder list' command; default: '__NULL__' (mandatory)

A.13.2. finder list

List all finders for a given target (must be an entity)

finder list

--class

The controller or entity for which the finders are generated; default if option not present: '*'

--depth

The depth of attribute combinations to be generated for the finders; default: '1'

--filter

A comma separated list of strings that must be present in a filter to be included; default:

'__NULL__'

A.14. Help Commands

Help Commands are contained in org.springframework.roo.felix.help.HelpCommands.

A.14.1. help

Shows system help

help

--command

Command name to provide help for; default: '__NULL__'

A.14.2. reference guide

Writes the reference guide XML fragments (in DocBook format) into the current working directory

reference guide

This command does not accept any options.

A.15. Hint Commands

Hint Commands are contained in org.springframework.roo.classpath.operations.HintCommands.

A.15.1. hint

Provides step-by-step hints and context-sensitive guidance

hint

Command Index

1.3.0.RELEASE 169

--topic

The topic for which advice should be provided

A.16. Integration Test Commands

Integration Test Commands are contained in

org.springframework.roo.addon.test.IntegrationTestCommands.

A.16.1. test integration

Creates a new integration test for the specified entity

test integration

--entity

The name of the entity to create an integration test for; default if option not present: '*'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

--transactional

Indicates whether the created test cases should be run withing a Spring transaction; default: 'true'

A.16.2. test mock

Creates a mock test for the specified entity

test mock

--entity

The name of the entity this mock test is targeting; default if option not present: '*'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.16.3. test stub

Creates a test stub for the specified class

test stub

--class

The name of the class this mock test is targeting; default if option not present: '*'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.17. J Line Shell Component

J Line Shell Component are contained in

org.springframework.roo.shell.jline.osgi.JLineShellComponent.

Command Index

1.3.0.RELEASE 170

A.17.1. */

End of block comment

*/

This command does not accept any options.

A.17.2. /*

Start of block comment

/*

This command does not accept any options.

A.17.3. //

Inline comment markers (start of line only)

//

This command does not accept any options.

A.17.4. date

Displays the local date and time

date

This command does not accept any options.

A.17.5. flash test

Tests message flashing

flash test

This command does not accept any options.

A.17.6. script

Parses the specified resource file and executes its commands

script --file

--file

The file to locate and execute; default: '__NULL__' (mandatory)

--lineNumbers

Display line numbers when executing the script; default if option present: 'true'; default if option

not present: 'false'

A.17.7. system properties

Shows the shell's properties

Command Index

1.3.0.RELEASE 171

system properties

This command does not accept any options.

A.17.8. version

Displays shell version

version

--[default]

Special version flags; default: '__NULL__'

A.18. Jms Commands

Jms Commands are contained in org.springframework.roo.addon.jms.JmsCommands.

A.18.1. field jms template

Insert a JmsOperations field into an existing type

field jms template

--fieldName

The name of the field to add; default: 'jmsOperations'

--class

The name of the class to receive this field; default if option not present: '*'

--async

Indicates if the injected method should be executed asynchronously; default if option present:

'true'; default if option not present: 'false'

A.18.2. jms listener class

Create an asynchronous JMS consumer

jms listener class --class

--class

The name of the class to create; default: '__NULL__' (mandatory)

--destinationName

The name of the destination; default: 'myDestination'

--destinationType

The type of the destination; default: 'QUEUE'

A.18.3. jms setup

Install a JMS provider into your project

jms setup --provider

Command Index

1.3.0.RELEASE 172

--provider

The persistence provider to support; default: '__NULL__' (mandatory)

--destinationName

The name of the destination; default: 'myDestination'

--destinationType

The type of the destination; default: 'QUEUE'

A.19. Jpa Commands

Jpa Commands are contained in org.springframework.roo.addon.jpa.JpaCommands.

A.19.1. database properties list

Shows database configuration details

database properties list

This command does not accept any options.

A.19.2. database properties remove

Removes a particular database property

database properties remove --key

--key

The property key that should be removed; default: '__NULL__' (mandatory)

A.19.3. database properties set

Changes a particular database property

database properties set --key --value

--key

The property key that should be changed; default: '__NULL__' (mandatory)

--value

The new vale for this property key; default: '__NULL__' (mandatory)

A.19.4. embeddable

Creates a new Java class source file with the JPA @Embeddable annotation in SRC_MAIN_JAVA

embeddable --class

--class

The name of the class to create; default: '__NULL__' (mandatory)

--serializable

Whether the generated class should implement java.io.Serializable; default if option present: 'true';

default if option not present: 'false'

Command Index

1.3.0.RELEASE 173

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

A.19.5. entity jpa

Creates a new JPA persistent entity in SRC_MAIN_JAVA

entity jpa --class

--class

Name of the entity to create; default: '__NULL__' (mandatory)

--extends

The superclass (defaults to java.lang.Object); default if option not present: 'java.lang.Object'

--implements

The interface to implement; default: '__NULL__'

--abstract

Whether the generated class should be marked as abstract; default if option present: 'true'; default

if option not present: 'false'

--testAutomatically

Create automatic integration tests for this entity; default if option present: 'true'; default if option

not present: 'false'

--table

The JPA table name to use for this entity; default: '__NULL__'

--schema

The JPA table schema name to use for this entity; default: '__NULL__'

--catalog

The JPA table catalog name to use for this entity; default: '__NULL__'

--identifierField

The JPA identifier field name to use for this entity; default: '__NULL__'

--identifierColumn

The JPA identifier field column to use for this entity; default: '__NULL__'

--identifierType

The data type that will be used for the JPA identifier field (defaults to java.lang.Long); default:

'java.lang.Long'

--versionField

The JPA version field name to use for this entity; default: '__NULL__'

--versionColumn

The JPA version field column to use for this entity; default: '__NULL__'

--versionType

The data type that will be used for the JPA version field (defaults to java.lang.Integer); default if

option not present: 'java.lang.Integer'

Command Index

1.3.0.RELEASE 174

--inheritanceType

The JPA @Inheritance value (apply to base class); default: '__NULL__'

--mappedSuperclass

Apply @MappedSuperclass for this entity; default if option present: 'true'; default if option not

present: 'false'

--equals

Whether the generated class should implement equals and hashCode methods; default if option

present: 'true'; default if option not present: 'false'

--serializable

Whether the generated class should implement java.io.Serializable; default if option present: 'true';

default if option not present: 'false'

--persistenceUnit

The persistence unit name to be used in the persistence.xml file; default: '__NULL__'

--transactionManager

The transaction manager name; default: '__NULL__'

--permitReservedWords

Indicates whether reserved words are ignored by Roo; default if option present: 'true'; default if

option not present: 'false'

--entityName

The name used to refer to the entity in queries; default: '__NULL__'

--sequenceName

The name of the sequence for incrementing sequence-driven primary keys; default: '__NULL__'

--activeRecord

Generate CRUD active record methods for this entity; default: 'true'

A.19.6. jpa setup

Install or updates a JPA persistence provider in your project

jpa setup --provider --database

--provider

The persistence provider to support; default: '__NULL__' (mandatory)

--database

The database to support; default: '__NULL__' (mandatory)

--applicationId

The Google App Engine application identifier to use; default if option not present: 'the project's

name'

--jndiDataSource

The JNDI datasource to use; default: '__NULL__'

--hostName

The host name to use; default: '__NULL__'

Command Index

1.3.0.RELEASE 175

--databaseName

The database name to use; default: '__NULL__'

--userName

The username to use; default: '__NULL__'

--password

The password to use; default: '__NULL__'

--transactionManager

The transaction manager name; default: '__NULL__'

--persistenceUnit

The persistence unit name to be used in the persistence.xml file; default: '__NULL__'

A.19.7. persistence setup

Install or updates a JPA persistence provider in your project - deprecated, use 'jpa setup' instead

persistence setup --provider --database

--provider

The persistence provider to support; default: '__NULL__' (mandatory)

--database

The database to support; default: '__NULL__' (mandatory)

--applicationId

The Google App Engine application identifier to use; default if option not present: 'the project's

name'

--jndiDataSource

The JNDI datasource to use; default: '__NULL__'

--hostName

The host name to use; default: '__NULL__'

--databaseName

The database name to use; default: '__NULL__'

--userName

The username to use; default: '__NULL__'

--password

The password to use; default: '__NULL__'

--transactionManager

The transaction manager name; default: '__NULL__'

--persistenceUnit

The persistence unit name to be used in the persistence.xml file; default: '__NULL__'

A.20. Jsf Commands

Jsf Commands are contained in org.springframework.roo.addon.jsf.JsfCommands.

Command Index

1.3.0.RELEASE 176

A.20.1. web jsf all

Create JSF managed beans for all entities

web jsf all --package

--package

The package in which new JSF managed beans will be placed; default: '__NULL__' (mandatory)

A.20.2. web jsf media

Add a cross-browser generic player to embed multimedia content

web jsf media --url

--url

The url of the media source; default: '__NULL__' (mandatory)

--player

The name of the media player; default: '__NULL__'

A.20.3. web jsf scaffold

Create JSF managed bean for an entity

web jsf scaffold --class

--class

The path and name of the JSF managed bean to be created; default: '__NULL__' (mandatory)

--entity

The entity which this JSF managed bean class will create and modify as required; default if option

not present: '*'

--beanName

The name of the managed bean to use in the 'name' attribute of the @ManagedBean annotation;

default: '__NULL__'

--includeOnMenu

Include this entity on the generated JSF menu; default: 'true'

A.20.4. web jsf setup

Set up JSF environment

web jsf setup

--implementation

The JSF implementation to use; default: '__NULL__'

--library

The JSF component library to use; default: '__NULL__'

--theme

The name of the theme; default: '__NULL__'

Command Index

1.3.0.RELEASE 177

A.21. Json Commands

Json Commands are contained in org.springframework.roo.addon.json.JsonCommands.

A.21.1. json add

Adds @RooJson annotation to target type

json add

--class

The java type to apply this annotation to; default if option not present: '*'

--rootName

The root name which should be used to wrap the JSON document; default: '__NULL__'

--deepSerialize

Indication if deep serialization should be enabled.; default if option present: 'true'; default if option

not present: 'false'

--iso8601Dates

Indication if dates should be formatted according to ISO 8601; default if option present: 'true';

default if option not present: 'false'

A.21.2. json all

Adds @RooJson annotation to all types annotated with @RooJavaBean

json all

--deepSerialize

Indication if deep serialization should be enabled; default if option present: 'true'; default if option

not present: 'false'

--iso8601Dates

Indication if dates should be formatted according to ISO 8601; default if option present: 'true';

default if option not present: 'false'

A.22. Jsp Commands

Jsp Commands are contained in org.springframework.roo.addon.web.mvc.jsp.JspCommands.

A.22.1. controller class

Create a new manual Controller (ie where you write the methods) - deprecated, use 'web mvc controller'

instead

controller class --class

--class

The path and name of the controller object to be created; default: '__NULL__' (mandatory)

--preferredMapping

Indicates a specific request mapping path for this controller (eg /foo/); default: '__NULL__'

Command Index

1.3.0.RELEASE 178

A.22.2. web mvc controller

Create a new manual Controller (ie where you write the methods)

web mvc controller --class

--class

The path and name of the controller object to be created; default: '__NULL__' (mandatory)

--preferredMapping

Indicates a specific request mapping path for this controller (eg /foo/); default: '__NULL__'

A.22.3. web mvc install language

Install new internationalization bundle for MVC scaffolded UI.

web mvc install language --code

--code

The language code for the desired bundle; default: '__NULL__' (mandatory)

A.22.4. web mvc install view

Create a new static view.

web mvc install view --path --viewName --title

--path

The path the static view to create in (required, ie '/foo/blah'); default: '__NULL__' (mandatory)

--viewName

The view name the mapping this view should adopt (required, ie 'index'); default:

'__NULL__' (mandatory)

--title

The title of the view; default: '__NULL__' (mandatory)

A.22.5. web mvc language

Install new internationalization bundle for MVC scaffolded UI.

web mvc language --code

--code

The language code for the desired bundle; default: '__NULL__' (mandatory)

A.22.6. web mvc setup

Setup a basic project structure for a Spring MVC / JSP application

web mvc setup

This command does not accept any options.

Command Index

1.3.0.RELEASE 179

A.22.7. web mvc update tags

Replace an existing application tagx library with the latest version (use --backup option to backup your

application first)

web mvc update tags

--backup

Backup your application before replacing your existing tag library; default if option present: 'true';

default if option not present: 'false'

A.22.8. web mvc view

Create a new static view.

web mvc view --path --viewName --title

--path

The path the static view to create in (required, ie '/foo/blah'); default: '__NULL__' (mandatory)

--viewName

The view name the mapping this view should adopt (required, ie 'index'); default:

'__NULL__' (mandatory)

--title

The title of the view; default: '__NULL__' (mandatory)

A.23. Logging Commands

Logging Commands are contained in org.springframework.roo.addon.logging.LoggingCommands.

A.23.1. logging setup

Configure logging in your project

logging setup --level

--level

The log level to configure; default: '__NULL__' (mandatory)

--package

The package to append the logging level to (all by default); default: '__NULL__'

A.24. Mail Commands

Mail Commands are contained in org.springframework.roo.addon.email.MailCommands.

A.24.1. email sender setup

Install a Spring JavaMailSender in your project

email sender setup --hostServer

Command Index

1.3.0.RELEASE 180

--hostServer

The host server; default: '__NULL__' (mandatory)

--protocol

The protocol used by mail server; default: '__NULL__'

--port

The port used by mail server; default: '__NULL__'

--encoding

The encoding used for mail; default: '__NULL__'

--username

The mail account username; default: '__NULL__'

--password

The mail account password; default: '__NULL__'

A.24.2. email template setup

Configures a template for a SimpleMailMessage

email template setup

--from

The 'from' email (optional); default: '__NULL__'

--subject

The message subject (obtional); default: '__NULL__'

A.24.3. field email template

Inserts a MailTemplate field into an existing type

field email template

--fieldName

The name of the field to add; default: 'mailTemplate'

--class

The name of the class to receive this field; default if option not present: '*'

--async

Indicates if the injected method should be executed asynchronously; default if option present:

'true'; default if option not present: 'false'

A.25. Maven Commands

Maven Commands are contained in org.springframework.roo.project.MavenCommands.

A.25.1. dependency add

Adds a new dependency to the Maven project object model (POM)

Command Index

1.3.0.RELEASE 181

dependency add --groupId --artifactId --version

--groupId

The group ID of the dependency; default: '__NULL__' (mandatory)

--artifactId

The artifact ID of the dependency; default: '__NULL__' (mandatory)

--version

The version of the dependency; default: '__NULL__' (mandatory)

--classifier

The classifier of the dependency; default: '__NULL__'

--scope

The scope of the dependency; default: '__NULL__'

A.25.2. dependency remove

Removes an existing dependency from the Maven project object model (POM)

dependency remove --groupId --artifactId --version

--groupId

The group ID of the dependency; default: '__NULL__' (mandatory)

--artifactId

The artifact ID of the dependency; default: '__NULL__' (mandatory)

--version

The version of the dependency; default: '__NULL__' (mandatory)

--classifier

The classifier of the dependency; default: '__NULL__'

A.25.3. maven repository add

Adds a new repository to the Maven project object model (POM)

maven repository add --id --url

--id

The ID of the repository; default: '__NULL__' (mandatory)

--name

The name of the repository; default: '__NULL__'

--url

The URL of the repository; default: '__NULL__' (mandatory)

A.25.4. maven repository remove

Removes an existing repository from the Maven project object model (POM)

maven repository remove --id --url

Command Index

1.3.0.RELEASE 182

--id

The ID of the repository; default: '__NULL__' (mandatory)

--url

The URL of the repository; default: '__NULL__' (mandatory)

A.25.5. module create

Creates a new Maven module

module create --moduleName --topLevelPackage

--moduleName

The name of the module; default: '__NULL__' (mandatory)

--topLevelPackage

The uppermost package name (this becomes the <groupId> in Maven and also the '~' value when

using Roo's shell); default: '__NULL__' (mandatory)

--java

Forces a particular major version of Java to be used (will be auto-detected if unspecified; specify

6 or 7 only); default: '__NULL__'

--parent

The Maven coordinates of the parent POM, in the form "groupId:artifactId:version"; default:

'__NULL__'

--packaging

The Maven packaging of this module; default if option not present: 'jar'

--artifactId

The artifact ID of this module (defaults to moduleName if not specified); default: '__NULL__'

A.25.6. module focus

Changes focus to a different project module

module focus --moduleName

--moduleName

The module to focus on; default: '__NULL__' (mandatory)

A.25.7. perform assembly

Executes the assembly goal via Maven

perform assembly

This command does not accept any options.

A.25.8. perform clean

Executes a full clean (including Eclipse files) via Maven

Command Index

1.3.0.RELEASE 183

perform clean

This command does not accept any options.

A.25.9. perform command

Executes a user-specified Maven command

perform command --mavenCommand

--mavenCommand

User-specified Maven command (eg test:test); default: '__NULL__' (mandatory)

A.25.10. perform eclipse

Sets up Eclipse configuration via Maven (only necessary if you have not installed the m2eclipse plugin

in Eclipse)

perform eclipse

This command does not accept any options.

A.25.11. perform package

Packages the application using Maven, but does not execute any tests

perform package

This command does not accept any options.

A.25.12. perform tests

Executes the tests via Maven

perform tests

This command does not accept any options.

A.25.13. project

Creates a new Maven project

project --topLevelPackage

--topLevelPackage

The uppermost package name (this becomes the <groupId> in Maven and also the '~' value when

using Roo's shell); default: '__NULL__' (mandatory)

--projectName

The name of the project (last segment of package name used as default); default: '__NULL__'

--java

Forces a particular major version of Java to be used (will be auto-detected if unspecified; specify

5 or 6 or 7 only); default: '__NULL__'

Command Index

1.3.0.RELEASE 184

--parent

The Maven coordinates of the parent POM, in the form "groupId:artifactId:version"; default:

'__NULL__'

--packaging

The Maven packaging of this project; default if option not present: 'jar'

A.26. Metadata Commands

Metadata Commands are contained in org.springframework.roo.classpath.MetadataCommands.

A.26.1. metadata cache

Shows detailed metadata for the indicated type

metadata cache --maximumCapacity

--maximumCapacity

The maximum number of metadata items to cache; default: '__NULL__' (mandatory)

A.26.2. metadata for id

Shows detailed information about the metadata item

metadata for id --metadataId

--metadataId

The metadata ID (should start with MID:); default: '__NULL__' (mandatory)

A.26.3. metadata for module

Shows the ProjectMetadata for the indicated project module

metadata for module

--module

The module for which to retrieve the metadata (defaults to the focused module); default:

'__NULL__'

A.26.4. metadata for type

Shows detailed metadata for the indicated type

metadata for type --type

--type

The Java type for which to display metadata; default: '__NULL__' (mandatory)

A.26.5. metadata status

Shows metadata statistics

metadata status

This command does not accept any options.

Command Index

1.3.0.RELEASE 185

A.26.6. metadata trace

Traces metadata event delivery notifications

metadata trace --level

--level

The verbosity of notifications (0=none, 1=some, 2=all); default: '__NULL__' (mandatory)

A.27. Mongo Commands

Mongo Commands are contained in

org.springframework.roo.addon.layers.repository.mongo.MongoCommands.

A.27.1. entity mongo

Creates a domain entity which can be backed by a MongoDB repository

entity mongo --class

--class

Implementation class for the specified interface; default: '__NULL__' (mandatory)

--identifierType

The ID type to be used for this domain type (defaults to BigInteger); default: '__NULL__'

--testAutomatically

Create automatic integration tests for this entity; default if option present: 'true'; default if option

not present: 'false'

A.27.2. mongo setup

Configures the project for MongoDB peristence.

mongo setup

--username

Username for accessing the database (defaults to ''); default: '__NULL__'

--password

Password for accessing the database (defaults to ''); default: '__NULL__'

--databaseName

Name of the database (defaults to project name); default: '__NULL__'

--port

Port for the database (defaults to '27017'); default: '__NULL__'

--host

Host for the database (defaults to '127.0.0.1'); default: '__NULL__'

--cloudFoundry

Deploy to CloudFoundry (defaults to 'false'); default if option present: 'true'; default if option not

present: 'false'

Command Index

1.3.0.RELEASE 186

A.27.3. repository mongo

Adds @RooMongoRepository annotation to target type

repository mongo --interface

--interface

The java interface to apply this annotation to; default: '__NULL__' (mandatory)

--entity

The domain entity this repository should expose; default if option not present: '*'

A.28. Os Commands

Os Commands are contained in org.springframework.roo.addon.oscommands.OsCommands.

A.28.1. !

Allows execution of operating system (OS) commands.

!

--command

The command to execute; default: ''

A.29. Pgp Commands

Pgp Commands are contained in org.springframework.roo.felix.pgp.PgpCommands.

A.29.1. pgp automatic trust

Indicates to automatically trust all keys encountered until the command is invoked again

pgp automatic trust

This command does not accept any options.

A.29.2. pgp key view

Downloads a remote key and displays it to the user (does not change any trusts)

pgp key view --keyId

--keyId

The key ID to view (eg 00B5050F or 0x00B5050F); default: '__NULL__' (mandatory)

A.29.3. pgp list trusted keys

Lists the keys you currently trust and have not been revoked at the time last downloaded from a public

key server

pgp list trusted keys

This command does not accept any options.

Command Index

1.3.0.RELEASE 187

A.29.4. pgp refresh all

Refreshes all keys from public key servers

pgp refresh all

This command does not accept any options.

A.29.5. pgp status

Displays the status of the PGP environment

pgp status

This command does not accept any options.

A.29.6. pgp trust

Grants trust to a particular key ID

pgp trust --keyId

--keyId

The key ID to trust (eg 00B5050F or 0x00B5050F); default: '__NULL__' (mandatory)

A.29.7. pgp untrust

Revokes your trust for a particular key ID

pgp untrust --keyId

--keyId

The key ID to remove trust from (eg 00B5050F or 0x00B5050F); default:

'__NULL__' (mandatory)

A.30. Process Manager Commands

Process Manager Commands are contained in

org.springframework.roo.process.manager.ProcessManagerCommands.

A.30.1. development mode

Switches the system into development mode (greater diagnostic information)

development mode

--enabled

Activates development mode; default: 'true'

A.30.2. poll now

Perform a manual file system poll

poll now

Command Index

1.3.0.RELEASE 188

This command does not accept any options.

A.30.3. poll speed

Changes the file system polling speed

poll speed --ms

--ms

The number of milliseconds between each poll; default: '__NULL__' (mandatory)

A.30.4. poll status

Display file system polling information

poll status

This command does not accept any options.

A.31. Process Manager Diagnostics Listener

Process Manager Diagnostics Listener are contained in

org.springframework.roo.process.manager.internal.ProcessManagerDiagnosticsListener.

A.31.1. process manager debug

Indicates if process manager debugging is desired

process manager debug

--enabled

Activates debug mode; default: 'true'

A.32. Prop File Commands

Prop File Commands are contained in org.springframework.roo.addon.propfiles.PropFileCommands.

A.32.1. properties list

Shows the details of a particular properties file

properties list --name --path

--name

Property file name (including .properties suffix); default: '__NULL__' (mandatory)

--path

Source path to property file; default: '__NULL__' (mandatory)

A.32.2. properties remove

Removes a particular properties file property

Command Index

1.3.0.RELEASE 189

properties remove --name --path --key

--name

Property file name (including .properties suffix); default: '__NULL__' (mandatory)

--path

Source path to property file; default: '__NULL__' (mandatory)

--key

The property key that should be removed; default: '__NULL__' (mandatory)

A.32.3. properties set

Changes a particular properties file property

properties set --name --path --key --value

--name

Property file name (including .properties suffix); default: '__NULL__' (mandatory)

--path

Source path to property file; default: '__NULL__' (mandatory)

--key

The property key that should be changed; default: '__NULL__' (mandatory)

--value

The new vale for this property key; default: '__NULL__' (mandatory)

A.33. Proxy Configuration Commands

Proxy Configuration Commands are contained in

org.springframework.roo.url.stream.jdk.ProxyConfigurationCommands.

A.33.1. proxy configuration

Shows the proxy server configuration

proxy configuration

This command does not accept any options.

A.34. Repository Jpa Commands

Repository Jpa Commands are contained in

org.springframework.roo.addon.layers.repository.jpa.RepositoryJpaCommands.

A.34.1. repository jpa

Adds @RooJpaRepository annotation to target type

repository jpa --interface

Command Index

1.3.0.RELEASE 190

--interface

The java interface to apply this annotation to; default: '__NULL__' (mandatory)

--entity

The domain entity this repository should expose; default if option not present: '*'

A.35. Security Commands

Security Commands are contained in org.springframework.roo.addon.security.SecurityCommands.

A.35.1. permissionEvaluator

Create a permission evaluator

permissionEvaluator --package

--package

The package to add the permission evaluator to; default: '__NULL__' (mandatory)

A.35.2. security setup

Install Spring Security into your project

security setup

This command does not accept any options.

A.36. Selenium Commands

Selenium Commands are contained in

org.springframework.roo.addon.web.selenium.SeleniumCommands.

A.36.1. selenium test

Creates a new Selenium test for a particular controller

selenium test --controller

--controller

Controller to create a Selenium test for; default: '__NULL__' (mandatory)

--name

Name of the test; default: '__NULL__'

--serverUrl

URL of the server where the web application is available, including protocol, port and hostname;

default: 'http://localhost:8080/'

A.37. Service Commands

Service Commands are contained in

org.springframework.roo.addon.layers.service.ServiceCommands.

Command Index

1.3.0.RELEASE 191

A.37.1. service all

Adds @RooService annotation to all entities

service all --interfacePackage

--interfacePackage

The java interface package; default: '__NULL__' (mandatory)

--classPackage

The java package of the implementation classes for the interfaces; default: '__NULL__'

--useXmlConfiguration

When true, Spring Roo will configure services using XML. This is the default behavior for services

using GAE; default: '__NULL__'

A.37.2. service secure all

Adds @RooService annotation to all entities with options for authentication, authorization, and a

permission evaluator

service secure all --interfacePackage

--interfacePackage

The java interface package; default: '__NULL__' (mandatory)

--classPackage

The java package of the implementation classes for the interfaces; default: '__NULL__'

--requireAuthentication

Whether or not users must be authenticated to use the service; default if option present: 'true';

default if option not present: 'false'

--authorizedRole

The role authorized the use the methods in the service (additional roles can be added after creation);

default: '__NULL__'

--usePermissionEvaluator

Whether or not to use a PermissionEvaluator; default if option present: 'true'; default if option not

present: 'false'

--useXmlConfiguration

When true, Spring Roo will configure services using XML.; default: '__NULL__'

A.37.3. service secure type

Adds @RooService annotation to target type with options for authentication, authorization, and a

permission evaluator

service secure type --interface

--interface

The java interface to apply this annotation to; default: '__NULL__' (mandatory)

Command Index

1.3.0.RELEASE 192

--class

Implementation class for the specified interface; default: '__NULL__'

--entity

The domain entity this service should expose; default if option not present: '*'

--requireAuthentication

Whether or not users must be authenticated to use the service; default if option present: 'ture';

default if option not present: 'false'

--authorizedRoles

The role authorized the use the methods in the service; default: '__NULL__'

--usePermissionEvaluator

Whether or not to use a PermissionEvaluator; default if option present: 'true'; default if option not

present: 'false'

--useXmlConfiguration

When true, Spring Roo will configure services using XML.; default: '__NULL__'

A.37.4. service type

Adds @RooService annotation to target type

service type --interface

--interface

The java interface to apply this annotation to; default: '__NULL__' (mandatory)

--class

Implementation class for the specified interface; default: '__NULL__'

--entity

The domain entity this service should expose; default if option not present: '*'

--useXmlConfiguration

When true, Spring Roo will configure services using XML.; default: '__NULL__'

A.38. Solr Commands

Solr Commands are contained in org.springframework.roo.addon.solr.SolrCommands.

A.38.1. solr add

Make target type searchable

solr add

--class

The type to be made searchable; default if option not present: '*'

A.38.2. solr all

Make all eligible project types searchable

Command Index

1.3.0.RELEASE 193

solr all

This command does not accept any options.

A.38.3. solr setup

Install support for Solr search integration

solr setup

--searchServerUrl

The URL of the Solr search server; default: 'http://localhost:8983/solr'

A.39. Tailor Commands

Tailor Commands are contained in org.springframework.roo.addon.tailor.TailorCommands.

A.39.1. tailor activate

Activate a tailor configuration.

tailor activate --name

--name

The name of the tailor configuration; default: '__NULL__' (mandatory)

A.39.2. tailor deactivate

Deactivate the tailor.

tailor deactivate

This command does not accept any options.

A.39.3. tailor list

List available tailor configurations.

tailor list

This command does not accept any options.

A.40. Uaa Commands

Uaa Commands are contained in org.springframework.roo.uaa.UaaCommands.

A.40.1. download accept terms of use

Accepts the Spring User Agent Analysis (UAA) Terms of Use

download accept terms of use

This command does not accept any options.

Command Index

1.3.0.RELEASE 194

A.40.2. download privacy level

Changes the Spring User Agent Analysis (UAA) privacy level

download privacy level --privacyLevel

--privacyLevel

The new UAA privacy level to use; default: '__NULL__' (mandatory)

A.40.3. download reject terms of use

Rejects the Spring User Agent Analysis (UAA) Terms of Use

download reject terms of use

This command does not accept any options.

A.40.4. download status

Provides a summary of the Spring User Agent Analysis (UAA) status and commands

download status

This command does not accept any options.

A.40.5. download view

Displays the Spring User Agent Analysis (UAA) header content in plain text

download view

--file

The file to save the UAA JSON content to; default: '__NULL__'

A.41. Web Finder Commands

Web Finder Commands are contained in

org.springframework.roo.addon.web.mvc.controller.finder.WebFinderCommands.

A.41.1. web mvc finder add

Adds @RooWebFinder annotation to MVC controller type

web mvc finder add --formBackingType

--formBackingType

The finder-enabled type; default: '__NULL__' (mandatory)

--class

The controller java type to apply this annotation to; default if option not present: '*'

A.41.2. web mvc finder all

Adds @RooWebFinder annotation to existing MVC controllers

Command Index

1.3.0.RELEASE 195

web mvc finder all

This command does not accept any options.

A.42. Web Flow Commands

Web Flow Commands are contained in

org.springframework.roo.addon.web.flow.WebFlowCommands.

A.42.1. web flow

Install Spring Web Flow configuration artifacts into your project

web flow

--flowName

The name for your web flow; default: '__NULL__'

A.43. Web Json Commands

Web Json Commands are contained in

org.springframework.roo.addon.web.mvc.controller.json.WebJsonCommands.

A.43.1. web mvc json add

Adds @RooJson annotation to target type

web mvc json add --jsonObject

--jsonObject

The JSON-enabled object which backs this Spring MVC controller.; default:

'__NULL__' (mandatory)

--class

The java type to apply this annotation to; default if option not present: '*'

A.43.2. web mvc json all

Adds or creates MVC controllers annotated with @RooWebJson annotation

web mvc json all

--package

The package in which new controllers will be placed; default: '__NULL__'

A.43.3. web mvc json setup

Set up Spring MVC to support JSON

web mvc json setup

This command does not accept any options.

1.3.0.RELEASE 196

Appendix B. Upgrade Notes and Known
Issues

B.1. Known Issues

Because Spring Roo integrates a large number of other technologies, invariably some people using

Roo may experience issues when using certain combinations of technologies together. This section

aims to list such known issues in an effort to help you avoid experiencing any problems. If you are

able to contribute further information, a solution or workaround to any of these known issues, we'd

certainly appreciate hearing from you via the community forums.

• JDK compatibility: Spring Roo has been tested with Sun, IBM, JRockit and Apache Harmony JVMs

for Java 5 and Java 6. We do not formally support other JVMs or other versions of JVMs. We have

also had an issue reported with versions of Java 6 before 1.6.0_17 due to Java bug 6506304 and

therefore recommend you always use the latest released version of Java 6 for your platform. There

is also a known issue with OpenJDK. You can read about our testing of different JDKs in issue

ROO-106.

• Human language support: Pluralisation within Roo delegates to the Inflector library. Due to some

issues with Inflector, only English pluralisation is supported. If you wish to override the plural

selected by Inflector (and in turn used by Roo), you can specify a particular plural for either a Java

type or Java field by using the @RooPlural annotation. Longer term it would be nice if someone

ported the Inflector code into the Roo pluralisation add-on so that we can fix these issues and support

other languages. We are receptive to contributions from the community along these lines.

• Shell wrapping: In certain cases typing a long command into the shell that wraps over a single line

may prevent you from being able to backspace to the prior line. This is caused by the JLine library

(not Roo). We expect to rewrite the shell at some future time and will likely stop using JLine at

that point.

• Hibernate issues: Hibernate is one of the JPA providers we test with, however, Hibernate has issues

with --mappedSuperclass as detailed in ROO-292 and ROO-747. We recommend you do not use

--mappedSuperclass in combination with Hibernate. We have found OpenJPA works reliably in

all cases, so you might want to consider switching to OpenJPA if you are seriously impacted by

this issue (the "jpa setup" command can be used multiple times, which is useful for experimentally

switching between different JPA providers).

• Integration testing limitations: The data on demand mechanism (which is used for integration

tests) has limited JSR 303 (Bean Validator) compatibility. Roo supports fields using @NotNull,

@Past and @Future, @Size, @Min, and @Max. No other validator annotations are formally

supported, although many will work. To use other validator annotations, you may need to edit

your DataOnDemand.java file and add a manual getNewTransientEntity(int) method. Refer to a

generated *_Roo_DataOnDemand.aj file for an example. Alternately, do not use the integration test

functionality in Roo unless you have relatively simple validation constraints or you are willing to

provide this data on demand method.

• Tomcat 5.5: Tomcat 5.5 can not be supported by the scaffolded Spring MVC Web UI. Tomcat 5.5

does not support the JSP 2.1 API. Roo makes extensive use of the JSP 2.1 API in the scaffolded Web

https://jira.springsource.org/browse/ROO-347
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6506304
https://jira.springsource.org/browse/ROO-106
https://inflector.dev.java.net/
https://jira.springsource.org/browse/ROO-292
https://jira.springsource.org/browse/ROO-747

Upgrade Notes and Known Issues

1.3.0.RELEASE 197

UI (specifically expression language features). Furthermore, the JSP 2.0 API does not support JDK

5 enums (a feature that Roo would need). See ROO-680 for more details. The following forum post

offers a workaround for the JSP 2.1 incompatibility issue. Please be aware that this has not been

tested by the Roo team and Tomcat 5.5 does officially support the JSP 2.0 API.

• Applications with a scaffolded Spring MVC UI are currently not deployable to Google App Engine

due to incompatibilities in the JSP support and JSTL. See ROO-1006 for details.

• Applications with a scaffolded GWT UI require a manual adjustment in src/main/webapp/WEB-

INF/spring/webmvc-config.xml (this will not be required when using Spring Framework 3.0.5+):

<mvc:default-servlet-handler default-servlet-name="_ah_default" />

B.2. Version Numbering Approach

Spring Roo observes version number standards based on the Apache Portable Runtime (APR)

versioning guidelines as well as the OSGi specifications. In summary this means all Roo releases

adopt the format of MAJOR.MINOR.PATCH.TYPE. Each segment is separated by a period without

any spaces. The MAJOR.MINOR.PATCH are always integer numbers, and TYPE is an alphanumeric

value. For example, Roo 1.0.3.M1 means major version 1, minor version 0, patch number 3 and release

type M1.

You can always rely on the natural sort order of the version numbers to arrive at the latest available

version. For example, 1.0.4.RELEASE is more recent than 1.0.4.RC2. This is because "RELEASE"

sorts alphabetically lower than "RC2". The TYPE segment can generally be broken into two further

undelimited portions, being the release type and a numeric increment. For example, RC1 means release

candidate 1 and RC4 means release candidate 4. One exception to this is RELEASE means the final

general availability of that release. Other common release types include "A" for alpha and "M" for

milestone.

We make no guarantees regarding the compatibility of any release that has a TYPE other than

"RELEASE". However, for "RELEASE" releases we aim to ensure you can use a given "RELEASE"

with any other "RELEASE" which has the same MAJOR.MINOR version number. As such you should

be able to switch from 1.0.4.RELEASE to 1.0.9.RELEASE without any changes. However, you might

have trouble with 1.0.4.RELEASE to 1.0.9.RC1 as RC1 is a work-in-progress and we may not have

identified all regression issues. Obviously this version portability is only our objective, and sometimes

we need to make exceptions or may inadvertently overlook an issue. We appreciate you logging a bug

report if you identify a version regression that violates the conventions expressed in this section, so that

at least we can confirm it and either attempt to remedy it on the next release of that MAJOR.MINOR

version range or bring it to people's attention in the other sections of this appendix.

When upgrading you should review the issue tracker for what has changed since the last version.

Because most releases include a large number of issues in the release notes, we attempt to highlight

any major issues that may require your attention in the sections below. These notes are not all-

encompassing but simply pointers to the main upgrade-related issues that most people should be aware

of. They are also written assuming you are maintaining currency with the latest public releases of

Spring Roo and therefore the changes you may need to make to your project are cumulative.

B.3. Upgrading To Any New Release

Before upgrading any project to the next release of Spring Roo, you should always:

https://jira.springsource.org/browse/ROO-680
http://forum.springsource.org/showpost.php?s=10e2df3cc266c9a85f8d473716d9b0c3&p=287652&postcount=15
https://jira.springframework.org/browse/ROO-1006
http://apr.apache.org/versioning.html
http://apr.apache.org/versioning.html
http://www.osgi.org

Upgrade Notes and Known Issues

1.3.0.RELEASE 198

• Run the backup command using your currently-installed (i.e. existing) version of Spring Roo. This

will help create a ZIP of your project, which may help if you need to revert. Don't install the new

version of Roo until you've firstly completed this backup. Naturally you can skip this step if you

have an alternate backup technique and have confidence in it.

• Edit your project's pom.xml and verify the Spring Roo annotations JAR matches the new Roo release

you are installing. Spring Roo 1.1.0.M3 and above will do this automatically on your behalf when

you load it on an existing project.

• Edit your project's pom.xml and verify that major libraries match the new versions that are now

used by Roo. The simplest approach to doing this is to create a new directory and use "roo script

clinic.roo" and then diff your existing pom.xml against the newly-created Petclinic pom.xml.

• After modifying the pom.xml as described above, you will need to update your Eclipse .classpath

file. The simplest way to achieve this is to use mvn eclipse:clean eclipse:eclipse from the

command prompt, or use the perform eclipse command at the roo> shell prompt. You can skip this

step if you use m2eclipse, as would be the case for any SpringSource Tool Suite user.

Please refer to the specific upgrade section of this appendix for further instructions concerning

upgrading to a particular version of Roo.

If you experience any difficulty with upgrading your projects, please use the community support forum

for assistance.

B.4. Upgrading to 1.2.0.RC1

The main changes you need to be aware of when upgrading from Spring Roo 1.2.0.M1 to Spring Roo

1.2.0.RC1 are as follows:

• To align with the new persistence and repository choices introduced with Roo 1.2.0.M1 the entity

command has been adjusted to take the target persistence type into account. Please change your

log.roo scripts to use the new entity jpa command. More details about the new entity JPA command

as well as related annotation changes please refer to ROO-2833:

Table B.1. Old Annotations & Commands

 Active Record Repository Entity Command

JPA @RooEntity entity

Spring Data JPA @RooRepositoryJpa @RooJpaEntity entity --

activeRecord false +

repository jpa

Spring Data

MongoDB

@RooRepositoryMongo@RooMongoEntity entity mongo +

repository mongo

https://jira.springsource.org/browse/ROO-2833

Upgrade Notes and Known Issues

1.3.0.RELEASE 199

Table B.2. New Annotations & Commands

 Active Record Repository Entity Command

JPA @RooJpaActiveRecord entity jpa

Spring Data JPA @RooJpaRepository@RooJpaEntity entity jpa --

activeRecord false +

repository jpa

Spring Data

MongoDB

@RooMongoRepository@RooMongoEntity entity mongo +

repository mongo

B.5. Upgrading to 1.2.0.M1

The main changes you need to be aware of when upgrading from Spring Roo 1.1.5.RELEASE to

Spring Roo 1.2.0.M1 are as follows:

• The presence of @RooWebScaffold does not automatically trigger Spring MVC JSON integration

any more. The exposeJson attribute in this annotation has been deprecated and will be removed

for subsequent releases. To create Spring MVC JSON integration please see the JSON chapter or

simply use the web mvc json all command.

• The presence of @RooWebScaffold does not automatically trigger Spring MVC Finder integration

any more. The exposeFinders attribute in this annotation has been deprecated and will be removed

for subsequent releases. To create Spring MVC Finder integration please see MVC chapter or simply

use the web mvc finder all command.

• To update a Roo GWT project please run web gwt setup

B.6. Upgrading to 1.1.3.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.2.RELEASE to

Spring Roo 1.1.3.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• For MVC scaffolded applications it is recommended to manually replace the list.tagx in your

application by creating a dummy project and copying the list.tagx file into your project. This process

will be automated through a new 'web mvc update tags' command in Roo 1.1.4+.

B.7. Upgrading to 1.1.2.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.1.RELEASE to

Spring Roo 1.1.2.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

B.8. Upgrading to 1.1.1.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.RELEASE to

Spring Roo 1.1.1.RELEASE are as follows:

Upgrade Notes and Known Issues

1.3.0.RELEASE 200

• Complete the steps recommended in the Upgrading To Any New Release section.

• Converters for displaying related entities on JSP pages are now registered from

a centralized ConversionService artifact rather than from individual controllers. The

change is transparent if you've never set @RooWebScaffold(registerConverters=false) or

plugged in a custom ConversionService through <mvc:annotation-driven conversion-

service="myConversionService"/>. If you have then read on.

Remove all "registerConverters" attributes from @RooWebScaffold annotations and

make sure the "conversion-service" attribute from <mvc:annotation-driven conversion-

service="applicationConversionService"/> is set. Then run the Spring Roo 1.1.1 shell and let it

install the new ConversionService. When Roo is done making changes, manually move any custom

getXxxConverter() methods to the new ConversionService, delete the GenericConversionService

field from all controllers that have it, and delete any @PostContruct methods used to register the

converters. If you had previously configured your own ConversionService, move any converters or

formatter registrations to the new ConversionService installed by Spring Roo.

B.9. Upgrading to 1.1.0.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.RC1 to Spring Roo

1.1.0.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

B.10. Upgrading to 1.1.0.RC1

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M3 to Spring Roo

1.1.0.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• There have been changes made to the web.xml configuration to allow deployment of GWT

scaffolded applications to GAE. Please compare a web.xml produced in a new Spring Roo project

with your current project's web.xml to identify differences.

• The GWT maven artifacts in your local maven repository should be removed so they can be replaced

with the latest versions. Make sure to delete ~/.m2/repository/com/google/gwt and org/codehaus/

mojo/gwt-maven-plugin.

B.11. Upgrading to 1.1.0.M3

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M2 to Spring Roo

1.1.0.M3 are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• There have been changes made to the web.xml configuration following the adoption of Spring

Framework 3.0.4 improvements around root servlet mapping of DispatcherServlet. Please

compare a web.xml produced in a new Spring Roo project with your current project's web.xml to

identify differences.

Upgrade Notes and Known Issues

1.3.0.RELEASE 201

• If you are trying the early-access Google Web Toolkit (GWT) support, please be aware that from

Spring Roo 1.1.0.M3 until Spring Roo 1.1.0.RELEASE we will be using GWT 2.1 "snapshot" JARs.

This enables you to have access to the latest improvements in GWT 2.1.

B.12. Upgrading to 1.1.0.M2

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M1 to Spring Roo

1.1.0.M2 are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

B.13. Upgrading to 1.1.0.M1

The main changes you need to be aware of when upgrading from Spring Roo 1.0.2.RELEASE to

Spring Roo 1.1.0.M1 are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• If you used Roo 1.0.2's web MVC scaffolding, be aware there are considerable changes to the

web tier to support our new MVC features (such as JSPX round-tripping and easy tags). The

recommended approach is therefore to start a new project with Roo 1.1.0.M1 to identify the changes

that are needed to src/main/webapp.

B.14. Upgrading to 1.0.2.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.1.RELEASE to

Spring Roo 1.0.2.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• If you are using Spring Security in your Roo application, it is recommended you review issue

ROO-579 and consider disabling the ShallowEtagHeaderFilter filter in your web.xml.

B.15. Upgrading to 1.0.1.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RELEASE to

Spring Roo 1.0.1.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

B.16. Upgrading to 1.0.0.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RC4 to Spring Roo

1.0.0.RELEASE are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• Due to CSS issues discovered in the Roo RC4 release (ROO-480), the standard.css, alt.css and

the layout.jspx files required adjustment. To update these three files, please replace them with the

same files generated in a dummy project using Roo 1.0.0.RELEASE.

http://jira.springframework.org/browse/ROO-579
http://jira.springframework.org/browse/ROO-480

Upgrade Notes and Known Issues

1.3.0.RELEASE 202

B.17. Upgrading to 1.0.0.RC4

When upgrading from Spring Roo 1.0.0.RC3 to Spring Roo 1.0.0.RC4 you should be aware that a

large number of changes have been applied to the web scaffolding functionality. This has impacted

the Web layer. We therefore recommend the following:

• Complete the steps recommended in the Upgrading To Any New Release section.

• Roo 1.0.0.RC4 takes advantage of the new type conversion API introduced in Spring Framework

3.0.0.RC3 (see chapter 5 of the Spring reference documentation) which is aimed to replace property

editors. To remove existing property editors from your current project you can issue the following

command: rm -rf src/main/java/com/foo/domain/*Editor.java (depending on your package

naming convention)

• The easiest way to update the web artifacts is to delete the old ones completely. You can use the

following command from a *nix prompt to achieve this: rm -rf src/main/webapp/*

• Another (optional) step is to replace the web controllers. This step is only required if you have

used the dateFormat @RooWebScaffold(dateFormat="..") attribute in the @RooWebScaffold

annotation: rm -rf src/main/java/com/foo/web/* (depending on your package naming

convention). Alternatively, you can simply remove this attribute from the @RooWebScaffold

annotation. Note, date formats can now be defined via the field date command (see ROO-453

for further information).

• Run the controller command again to regenerate all necessary web artifacts. You might wish to use

either the controller all or controller scaffold command. This will recreate all web artifacts.

B.18. Upgrading to 1.0.0.RC3

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RC2 to Spring Roo

1.0.0.RC3 are as follows:

• Complete the steps recommended in the Upgrading To Any New Release section.

• Edit your project's src/main/webapp/WEB-INF/urlrewrite.xml and ensure it protects the resources

as discussed in the ROO-271.

• If you had previously used the "test mock" or "persistence exception translation"

commands, we have moved the resulting AspectJ files to the Spring Aspects project

(which has always been a dependency of all Roo projects). This will mean you

automatically receive improvements made to these features in the future as part of the

Spring Framework release cycle. You should therefore delete the following files if your

project contains them: Jpa_Exception_Translator.aj, AbstractMethodMockingControl.aj,

JUnitStaticEntityMockingControl.aj and MockStaticEntityMethods.aj. You must also ensure

you use Spring Framework 3.0.0.RC2 or above (which is the project which contains the Spring

Aspects project). See ROO-315 and ROO-316 for further information.

• Do not attempt to use the Spring Roo integration built into SpringSource Tool Suite (STS) 2.2.0 or

earlier with Spring Roo 1.0.0.RC3 or above. You must upgrade to STS 2.2.1 or above if you wish to

use Roo 1.0.0.RC3 with the STS integration. This is due to an internal API change made to support

third-party add-on development. If you are using STS 2.2.0 (or earlier) and are unable to upgrade,

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/ch05.html
https://jira.springsource.org/browse/ROO-453
https://jira.springsource.org/browse/ROO-271
https://jira.springsource.org/browse/ROO-315
https://jira.springsource.org/browse/ROO-314

Upgrade Notes and Known Issues

1.3.0.RELEASE 203

you can of course use Roo outside of any version of STS without any issue. The upgrade requirement

is simply to access the STS integration, such as CTRL + R commands and STS' embedded Roo shell.

1.3.0.RELEASE 204

Appendix C. Project Background
This chapter briefly covers the history of the Spring Roo project, and also explains its mission statement

in detail.

C.1. History

The Spring Roo available today is the result of relatively recent engineering, but the inspiration for

the project can be found several years earlier.

The historical motivation for "ROO" can be traced back to 2005. At that time the project's founder,

Ben Alex, was working on several enterprise applications and had noticed he was repeating the same

steps time and time again. Back in 2005 it was common to use a traditional layering involving DAOs,

services layer and web tier. A good deal of attention was also focused around that time on avoiding

anaemic domain objects and instead pursuing Domain Driven Design principles.

Pursuing a rich domain model led to domain objects that reflected proper object oriented principles,

such as careful application of encapsulation, immutability and properly defining the role of domain

objects within the enterprise application layering. Rich behaviour was added to these entities

via AspectJ and Spring Framework's recently-created @Configurable annotation (which enabled

dependency injection on entities irrespective of how the entities were instantiated). Naturally the web

frameworks of the era didn't work well with these rich domain objects (due to the lack of accessors,

mutators and no-argument constructors), and as such data transfer objects (DTOs) were created. The

mapping between DTOs and domain objects was approached with assembly technologies like Dozer.

To make all of this work nicely together, a code generator called Real Object Oriented - or "ROO" - was

created. The Real Object Oriented name reflected the rich domain object principles that underpinned

the productivity tool.

ROO was presented to audiences at the SpringOne Americas 2006 and TSSJS Europe 2007

conferences, plus the Stockholm Spring User Group and Enterprise Java Association of Australia. The

audiences were enthusiastic about the highly productive solution, with remarks like "it is the really

neatest and newest stuff I've seen in this conference" and "if ROO ever becomes an open source project,

I'm guessing it will be very polished and well-received". Nonetheless, other priorities (like the existing

Spring Security project) prevented the code from becoming release-ready. More than twelve months

later Ben was still regularly being asked by people, "whatever happened to the ROO framework?" and

as such he set out about resuming the project around August 2008.

By October 2008 a large amount of research and development had been undertaken on the new-and-

improved ROO. The original productivity ideas within ROO had been augmented with considerable

feedback from real-life use of ROO and the earlier conferences. In particular a number of projects

in Australia had used the unreleased ROO technology and these projects provided a great deal of

especially useful feedback. It was recognised from this feedback that the original ROO model suffered

from two main problems. First, it did not provide a highly usable interface and as such developers

required a reasonable amount of training to fully make use of Roo. Second, it imposed a high level

of architectural purity on all applications - such as the forced use of DTOs - and many people simply

didn't want such purity. While there were valid engineering reasons to pursue such an architecture, it

was the productivity that motivated people to use ROO and they found the added burden of issues like

DTO mapping cancelled out some of the gains that ROO provided. A mission statement was drafted

that concisely reflected the vision of the project, and this was used to guide the technical design.

http://domaindrivendesign.org/
http://dozer.sourceforge.net/
http://blog.zepag.org/2007/06/spring-one-day3-roo.html
http://blog.zepag.org/2007/06/spring-one-day3-roo.html
http://raibledesigns.com/rd/entry/tse_hop_into_real_object
http://raibledesigns.com/rd/entry/tse_hop_into_real_object
http://projects.spring.io/spring-security/

Project Background

1.3.0.RELEASE 205

In early December 2008 Ben took a completely rewritten ROO with him to SpringOne Americas

2008 and showed it to a number of SpringSource colleagues and community members. The response

was overwhelming. Not only had the earlier feedback been addressed, but many new ideas had been

incorporated into the Java-only framework. Furthermore, recent improvements to AspectJ and Spring

had made the entire solution far more effective and efficient than the earlier ROO model (such as

annotation-based component scanning, considerable enhancements to AJDT etc).

Feedback following the December 2008 demonstrations led to considerable focus on bringing the ROO

technology to the open source community. The name "ROO" was preserved as a temporary codename,

given that we planned to select a final name closer to official release. The "ROO" project was then

publicly presented on 27 April 2009 during Rod Johnson's SpringOne Europe keynote, "The Future

of Java Innovation". As part of the keynote the ROO system was used to build a voting application

that would allow the community to select a final name for the new project. The "ROO" name was

left as an option, although the case was changed to "Roo" to reflect the fact it no longer represented

any acronym. The resulting votes were Spring Roo (467), Spring Boost (180), Spring Spark (179),

Spring HyperDrive (64) and Spring Dart (62). As such "Spring Roo" became the official, community-

selected name for the project.

Roo 1.0.0.A1 was released during the SpringOne Europe 2009 conference, along with initial tooling for

SpringSource Tool Suite. The Roo talk at the SpringOne Europe 2009 conference was the most highly

attended session and there was enormous enthusiasm for the solution. Roo 1.0.0.A2 was published

a few weeks later, followed by several milestones. By SpringOne/2GX North America in October

2009, Roo 1.0.0 had reached Release Candidate 2 stage, and again the Roo session was the most

highly attended session of the entire conference. SpringSource also started hosting the highly popular

Spring Discovery Days and showing people around the world what they could do with the exciting

new Roo tool. Coupled with Twitter, by this stage many members of the Java community had caught

a glimpse of Roo and it was starting to appear in a large number of conferences, user group meetings

and development projects - all before it had even reached 1.0.0 General Availability!

C.2. Mission Statement

Spring Roo's mission is to "fundamentally and sustainably improve Java developer productivity

without compromising engineering integrity or flexibility".

Here's exactly what we mean by this:

• "fundamentally": We believe a fundamental improvement in developer productivity is attainable.

Tools, methodologies and frameworks that offer incidental improvement are nowhere near enough.

• "and sustainably improve": A one-off improvement in productivity isn't enough. The productivity

improvement needs to sustain beyond the initial jump-start, and continue unabated over a multi-year

period. Productivity must remain high even in the face of radically changing requirements, evolving

project team membership, and new platform versions

• "Java developer productivity": Our focus is unashamedly on developers who work with the most

popular programming language in the world, Java. We don't expect Java developers to learn new

programming languages and frameworks simply to enjoy a productivity gain. We want to harness

their existing Java knowledge, skills and experience, rather than expect them to unlearn what

they already know. The conceptual weight must be attainable and reasonable. We always favour

evolution over revolution, and provide a solution that is as fun, flexible and intuitive as possible.

http://www.infoq.com/presentations/SpringOne-Keynote-Rod-Johnson
http://www.infoq.com/presentations/SpringOne-Keynote-Rod-Johnson
http://www.springsource.com/products/sts
http://www.springsource.com
http://www.springsource.com/training/dd001

Project Background

1.3.0.RELEASE 206

• "without compromising": Other tools, methodologies and frameworks claim to create solutions that

provide these benefits. However, they impose a serious cost in critical areas. We refuse to make

this compromise.

• "engineering integrity": We embrace OO and language features the way Java language designers

intended, greatly simplifying understanding, refactoring, testing and debugging. We don't force

projects with significant performance requirements to choose between developer productivity or

deployment cost. We move processing to Generation IV web clients where possible, embrace

database capabilities, and offer an optimal approach to runtime considerations.

• "or flexibility": Projects are similar, but not identical. Developers need the flexibility to use

a different technology, pattern or framework when required. While we don't lock developers

into particular approaches, we certainly provide an optimal experience when following our

recommendations. We ensure that our technology is interface agnostic, gracefully supporting both

mainstream IDEs plus the command line. Of course, we support any reasonable deployment

scenario, and particularly the emerging class of Generation IV web clients.

We believe that Spring Roo today represents a successful embodiment of this mission statement. While

we still have work to do in identified feature areas such as Generation IV web clients, these are easily-

achieved future directions upon the existing Roo foundation.

1.3.0.RELEASE 207

Appendix D. Roo Resources
As an open source project, Spring Roo offers a large number of resources to assist the community

learn, interact with one another and become more involved in the project. Below you'll find a short

summary of the official project resources.

D.1. Project Home Page

Web: http://projects.spring.io/spring-roo/

The project home page provides a brief summary of Roo's main features and links to most of the other

project resources. Please use this URI if you are referring other people to the Spring Roo project, as

it is the main landing point for the project.

From the main Roo web site you'll also find links to our "resources index". The resources index

provides convenient, up-to-date links to all of the services shown below, as well as third-party add-

ons you are able to install.

D.2. Downloads and Maven Repositories

Web: http://www.springsource.com/download/community?project=Spring%20Roo

You can always access the latest Spring Roo release ZIP by visiting the above URI. The download

site not only provides the download itself, but also provides access to all historically released versions

plus SHA1 hash codes of those files.

We publish all Roo modules to a Maven repository at http://spring-roo-repository.springsource.org/

release. This Maven repository is automatically included in user project so that the annotation library

can be downloaded. It is also automatically included in the POM for add-ons created via the add-on

creator.

D.3. Community Forums

Web: http://forum.springsource.org/forumdisplay.php?f=67

For fast and free end user support for all official Spring projects, the Spring Community Forum is an

excellent place to visit. Because Roo is an official top-level Spring project, of course you'll find there

is a dedicated "Spring Roo forum" for all your questions, comments and experiences.

The Roo project does not have a "mailing list" or "newsgroup" as you might be familiar with from

other open source projects, although commercial support options are available.

Extensive search facilities are provided on the community forums, and the Roo developers routinely

answer user questions. One excellent way of contributing to the Roo project is to simply keep an eye

on the forum messages and help other people. Even recommendations along the lines of, "I don't know

how to do what you're trying to do, but we usually tackle the problem this way instead...." are very

helpful to other community members.

When you ask a question on the forum, it's highly recommended you include a small Roo sample script

that can be used to reproduce your problem. If that's infeasible, using Roo's "backup" command is

another alternative and you can attach the resulting ZIP file to your post. Other tips include always

http://projects.spring.io/spring-roo/
http://www.springsource.com/download/community?project=Spring%20Roo
http://spring-roo-repository.springsource.org/release
http://spring-roo-repository.springsource.org/release
http://forum.springsource.org/forumdisplay.php?f=67

Roo Resources

1.3.0.RELEASE 208

specifying the version of Roo that you're running (as can be obtained from the "version" command),

and if you're having trouble with IDE integration, the exact version of the IDE you are using (and,

if an Eclipse-based IDE, the version of AspectJ Development Tools in use). Another good source of

advice on how to ask questions on the forum can be found in Eric Raymond's often-cited essay, "How

to Ask Smart Questions".

If you believe you have found a bug or are experiencing an issue, it is recommended you first log a

message on the forum. This allows other experienced users to comment on whether it appears there

is a problem with Roo or perhaps just needs to be used a different way. Someone will usually offer a

solution or recommend you log a bug report (usually by saying "please log this in Jira"). When you

do log a bug report, please ensure you link to the fully-qualified URI to the forum post. That way

the developer who attempts to solve your bug will have background information. Please also post the

issue tracking link back in thread you started on the forum, as it will help other people cross-reference

the two systems.

D.4. Twitter

Roo Hash Code (please include in your tweets, and also follow for low-volume announcements):

@SpringRoo

Follow the core Roo development team for interesting Roo news and progress (higher volume than

just following @SpringRoo, but only a few Tweets per week): @alankstewart.

Many people who use Roo also use Twitter, including the core Roo development team. If you're a

Twitter user, you're welcome to follow the Roo development team (using the Twitter IDs above) to

receive up-to-the-minute Tweets on Roo activities, usage and events.

The Roo team also monitors Tweets that include @SpringRoo, so if you're Tweeting about Roo, please

remember to include @SpringRoo somewhere in the Tweet. If you like Roo or have found it helpful

on a project, please Tweet about it and help spread the word!

We do request that you use the Community Forums if you have a question or issue with Roo, as

140 characters doesn't allow us to provide in-depth technical support or provide a growing archive of

historical answers that people can search against.

D.5. Issue Tracking

Web: https://jira.springsource.org/browse/ROO

Spring projects use Atlassian Jira for tracking bugs, improvements, feature requests and tasks. Roo

uses a public Jira instance you're welcome to use in order to log issues, watch existing issues, vote for

existing issues and review the changes made between particular versions.

As discussed in the Community Forums section, we ask that you refrain from logging bug reports until

you've first discussed them on the forum. This allows others to comment on whether a bug actually

exists. When logging an issue in Jira, there is a field explicitly provided so you can link the forum

discussion to the Jira issue.

Please note that every commit into the Roo source repository will be prefixed with a particular Jira

issue number. All Jira issue numbers for the Roo project commence with "ROO-", providing you an

easy way to determine the rationale of any change.

http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html
http://search.twitter.com/search?q=@SpringRoo
http://twitter.com/alankstewart
https://jira.springsource.org/browse/ROO

Roo Resources

1.3.0.RELEASE 209

Because open source projects receive numerous enhancement requests, we generally prioritise

enhancements that have patches included, are quick to complete or those which have received a large

number of votes. You can vote for a particular issue by logging into Jira (it's fast, easy and free to

create an account) and click the "vote" link against any issue. Similarly you can monitor the progress

on any issue you're interested in by clicking "watch".

Enhancement requests are easier to complete (and therefore more probable to be actioned) if they

represent fine-grained units of work that include as much detail as possible. Enhancement requests

should describe a specific use case or user story that is trying to be achieved. It is usually helpful to

provide a Roo sample script that can be used to explain the issue. You should also consider whether

a particular enhancement is likely to appeal to most Roo users, and if not, whether perhaps writing it

as an add-on would be a good alternative.

D.6. Source Repository

Read repository: https://github.com/spring-projects/spring-roo.git

The Git source control system is currently used by Roo for mainline development.

Historical releases of Roo can be accessed by browsing the tags branches within our Git repository.

The mainline development of Roo occurs on the "master" branch.

To detailed information about how to check out and build Roo from Subversion, please refer to the

Development Processes chapter.

D.7. Source Web Browsing

Web: https://github.com/spring-projects/spring-roo.git

To assist those who wish to simply review the current Roo code but not check it out fully onto their

own computer, Spring Roo offers a public Atlassian FishEye instance. You can use this to not only

view the current source code, but also access old releases, perform sophisticated searches and even

build graphs and reports.

If you need to link to source code from an issue report or forum post, please use the FishEye service

to provide a fully-qualified URI.

D.8. Commercial Products and Services

Web: http://spring.io/

Pivitol Software employs the Roo development team and offers a wide range of products and

professional services around Roo and the technologies which Roo enables. Available professional

services include training, consulting, design reviews and mentoring, with products including service

level agreement (SLA) backed support subscriptions, certified builds, indemnification and integration

with various commercial products. Please visit the above URI to learn more about SpringSource

products and services and how these can add value to your build-run-manage application lifecycle.

D.9. Other

Please let us know if you believe it would be helpful to list any other resources in this documentation.

https://github.com/spring-projects/spring-roo.git
https://github.com/spring-projects/spring-roo.git
http://spring.io/
http://gopivotal.com/

